Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Identifying and Prioritizing Critical Risk Factors in the Context of a High-Voltage Power Transmission Line Construction Project: A Case Study from Sri Lanka
    (MDPI, Basel, Switzerland, 2024-12) Weerakkody W; Rathnayaka B; Siriwardana C; Luongo A; Giunta MS
    This study addresses critical risk factors in high-voltage power transmission line (HVPTL) construction projects, which are vital components of national energy infrastructure. HVPTL projects are essential for meeting energy needs but are often plagued by risks due to their linear construction nature, leading to project underperformance. However, the lack of attention to risk management often leads to project underperformance. This research aims to identify and rank these risks to facilitate effective risk management. Through literature review and preliminary surveys, 63 risk elements were identified under 14 main categories. These risks were ranked using two rounds of Delphi surveys and the analytical hierarchy process (AHP). The study focuses on a Sri Lankan HVPTL project. The most critical risk factors identified include “improper planning by the main contractor”, “delays in decision-making by the client/consultant”, “errors in initial costing”, and “inaccuracies in survey data”, with AHP analysis assigning significant weights of 43.9%, 18%, 16%, and 14.9% to these factors, respectively. Comparative analysis with similar studies reveals consistent findings, underscoring the importance of addressing delays in approvals, material unavailability, and construction-quality challenges. These results emphasize the necessity of adopting systematic risk-management techniques in HVPTL projects to mitigate uncertainties and enhance project outcomes.
  • Item
    Identifying and prioritizing climate change adaptation measures in the context of electricity, transportation and water infrastructure: A case study
    (Elsevier B.V., 2023-11-17) Rathnayaka B; Robert D; Siriwardana C; Adikariwattage VV; Pasindu HR; Setunge S; Amaratunga D
    Climate Change Adaptation (CCA) has become a vital measure within every nation due to the significant impacts posed by climate change on Critical Infrastructures (CIs) and human lives. Despite scholars' identification of possible impacts on CIs, a lack of consideration for CCA measures to mitigate these impacts can be observed. This study aims to identify and prioritize CCA measures in the assets and infrastructure of critical sectors; electricity, transportation, and water supply considering Sri Lanka as a case study. The present study employed an Analytical Hierarchical Process (AHP) to prioritize CCA measures of these three infrastructure sectors as a system considering their interconnected and systematic nature. The prioritization process was informed by 42 open-ended expert interviews, and these interviews were also instrumental in validating the criteria used to evaluate the CCA measures. The study identified and discussed several CCA measures for different stages of the infrastructure life cycle, including planning, design and construction, and maintenance and retrofitting. The CCA measures were prioritized based on eight criteria obtained from a detailed review analysis. The results revealed that an asset management system at the planning stage is the most significant CCA measure for CIs. Furthermore, the study emphasizes that proper planning of evacuation routes, consideration of operational loads imposed by climate change, and nature-based solutions are significant CCA measures that need to be incorporated during infrastructure development. The outcome from this study provides insights for built environment professionals to adapt infrastructures to climate change. Additionally, the results of the study can be integrated into the rules and regulations of the developing countries to enhance climate resilience within the built environment.