Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
5 results
Search Results
Item Novel machine learning-driven comparative analysis of CSP, STFT, and CSP-STFT fusion for EEG data classification across multiple meditation and non-meditation sessions in BCI pipeline.(BioMed Central Ltd, 2025-02-08) Liyanagedera ND; Bareham CA; Kempton H; Guesgen HWThis study focuses on classifying multiple sessions of loving kindness meditation (LKM) and non-meditation electroencephalography (EEG) data. This novel study focuses on using multiple sessions of EEG data from a single individual to train a machine learning pipeline, and then using a new session data from the same individual for the classification. Here, two meditation techniques, LKM-Self and LKM-Others were compared with non-meditation EEG data for 12 participants. Among many tested, three BCI pipelines we built produced promising results, successfully detecting features in meditation/ non-meditation EEG data. While testing different feature extraction algorithms, a common neural network structure was used as the classification algorithm to compare the performance of the feature extraction algorithms. For two of those pipelines, Common Spatial Patterns (CSP) and Short Time Fourier Transform (STFT) were successfully used as feature extraction algorithms where both these algorithms are significantly new for meditation EEG. As a novel concept, the third BCI pipeline used a feature extraction algorithm that fused the features of CSP and STFT, achieving the highest classification accuracies among all tested pipelines. Analyses were conducted using EEG data of 3, 4 or 5 sessions, totaling 3960 tests on the entire dataset. At the end of the study, when considering all the tests, the overall classification accuracy using SCP alone was 67.1%, and it was 67.8% for STFT alone. The algorithm combining the features of CSP and STFT achieved an overall classification accuracy of 72.9% which is more than 5% higher than the other two pipelines. At the same time, the highest mean classification accuracy for the 12 participants was achieved using the pipeline with the combination of CSP STFT algorithm, reaching 75.5% for LKM-Self/ non-meditation for the case of 5 sessions of data. Additionally, the highest individual classification accuracy of 88.9% was obtained by the participant no. 14. Furthermore, the results showed that the classification accuracies for all three pipelines increased with the number of training sessions increased from 2 to 3 and then to 4. The study was successful in classifying a new session of EEG meditation/ non-meditation data after training machine learning algorithms using a different set of session data, and this achievement will be beneficial in the development of algorithms that support meditation.Item Inferring arsenic anomalies indirectly using airborne hyperspectral imaging – Implication for gold prospecting along the Rise and Shine Shear Zone in New Zealand(Elsevier B V, 2024-08-01) Chakraborty R; Kereszturi G; Pullanagari R; Craw D; Durance P; Ashraf SWell-exposed mineral deposits are scarce at a global level and presently potential mineral-rich sites are underlying vegetation cover and topsoil, which are suboptimal for direct remote sensing based exploration techniques. This study aims to implement an indirect approach to arsenic (As) distribution mapping using the surface manifestations of the subsurface geology and link it to the known gold mineralisation in the study area. Rise and Shine Shear Zone (RSSZ) in New Zealand is broadly a part of the Otago schist hosting lower to upper green-schist facies rocks manifesting mesothermal gold mineralisation. The area has several surficial geological imprints separating mineralised and non-mineralised zones, but these are dominated by topographic ruggedness, soil moisture and vegetation (mainly grass/tussock) spectra in the hyperspectral data. Initially, a band selection using Recursive Feature Elimination (RFE) was executed. The bands generated were tallied with the field and geological understanding of the area. The resultant 85 bands were then further put through Orthogonal Total Variation Component Analysis (OTVCA) to concise the information in 10 bands. OTVCA output was then classified using Random Forest classifier to map three levels of As concentration (<20 ppm, between 20 and 100 ppm and >100 ppm). The potentially high As concentration zones are likely to be related to the gold mineralisation. The geology of the area correlates with soil exposure which is captured by the classification in some parts, this increases the accuracy but also makes the classification analysis challenging.Item An investigation of the imputation techniques for missing values in ordinal data enhancing clustering and classification analysis validity(Elsevier Inc, 2023-12) Alam S; Ayub MS; Arora S; Khan MAMissing data can significantly impact dataset integrity and suitability, leading to unreliable statistical results, distortions, and poor decisions. The presence of missing values in data introduces inaccuracies in clustering and classification and compromises the reliability and validity of such analyses. This study investigates multiple imputation techniques specifically designed for handling missing values in ordinal data commonly encountered in surveys and questionnaires. Quantitative approaches are used to evaluate different imputation methods on various datasets with varying missing value percentages. By comparing the performance of imputation techniques using clustering metrics and algorithms (e.g., k-means, Partitioning Around Medoids), the study provides valuable insights for selecting appropriate imputation methods for accurate data analysis. Furthermore, the study examines the impact of imputed values on classification algorithms, including k-Nearest Neighbors (kNN), Naive Bayes (NB), and Multilayer Perceptron (MLP). Results demonstrate that the decision tree method is the most effective approach, closely aligning with the original data and achieving high accuracy. In contrast, random number imputation performs poorly, indicating limited reliability. This study advances the understanding of handling missing values and emphasizes the need to address this issue to enhance data analysis integrity and validity.Item Common spatial pattern for classification of loving kindness meditation EEG for single and multiple sessions(BioMed Central Ltd, Springer Nature, 2023-09-09) Liyanagedera ND; Hussain AA; Singh A; Lal S; Kempton H; Guesgen HWWhile a very few studies have been conducted on classifying loving kindness meditation (LKM) and non-meditation electroencephalography (EEG) data for a single session, there are no such studies conducted for multiple session EEG data. Thus, this study aims at classifying existing raw EEG meditation data on single and multiple sessions to come up with meaningful inferences which will be highly beneficial when developing algorithms that can support medita- tion practices. In this analysis, data have been collected on Pre-Resting (before-meditation), Post-Resting (after- meditation), LKM-Self and LKM-Others for 32 participants and hence allowing us to conduct six pairwise comparisons for the four mind tasks. Common Spatial Patterns (CSP) is a feature extraction method widely used in motor imaginary brain computer interface (BCI), but not in meditation EEG data. Therefore, using CSP in extracting features from medi- tation EEG data and classifying meditation/non-meditation instances, particularly for multiple sessions will create a new path in future meditation EEG research. The classification was done using Linear Discriminant Analysis (LDA) where both meditation techniques (LKM-Self and LKM-Others) were compared with Pre-Resting and Post-Resting instances. The results show that for a single session of 32 participants, around 99.5% accuracy was obtained for clas- sifying meditation/Pre-Resting instances. For the 15 participants when using five sessions of EEG data, around 83.6% accuracy was obtained for classifying meditation/Pre-Resting instances. The results demonstrate the ability to classify meditation/Pre-Resting data. Most importantly, this classification is possible for multiple session data as well. In addi- tion to this, when comparing the classification accuracies of the six mind task pairs; LKM-Self, LKM-Others and Post- Resting produced relatively lower accuracies among them than the accuracies obtained for classifying Pre-Resting with the other three. This indicates that Pre-Resting has some features giving a better classification indicating that it is different from the other three mind tasks.Item Automatic Recognition of Light Microscope Pollen Images(Massey University, 2006) Allen, Gary; Hodgson, Bob; Marsland, Stephen; Arnold, Greg; Flemmer, Rory; Flenley, John; Fountain, DavidThis paper is a progress report on a project aimed at the realization of a low-cost, automatic, trainable system "AutoStage" for recognition and counting of pollen. Previous work on image feature selection and classification has been extended by design and integration of an XY stage to allow slides to be scanned, an auto focus system, and segmentation software. The results of a series of classification tests are reported, and verified by comparison with classification performance by expert palynologists. A number of technical issues are addressed, including pollen slide preparation and slide sampling protocols.
