Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
5 results
Search Results
Item Comparing the Effects of Collagen Hydrolysate and Dairy Protein on Recovery from Eccentric Exercise: A Double Blind, Placebo-Controlled Study.(MDPI (Basel, Switzerland), 2024-12-20) Barclay R; Coad J; Schraders K; Barnes MJ; Driss TBackground: Consuming collagen hydrolysate (CH) may improve symptoms of exercise-induced muscle damage (EIMD); however, its acute effects have not been compared to dairy protein (DP), the most commonly consumed form of protein supplement. Therefore, this study compared the effects of CH and DP on recovery from EIMD. Methods: Thirty-three males consumed either CH (n = 11) or DP (n = 11), containing 25 g of protein, or an isoenergetic placebo (n = 11) immediately post-exercise and once daily for three days. Indices of EIMD were measured before and 30 min and 24, 48, and 72 h after 30 min of downhill running on a −15% slope at 80% of VO2max speed. Results: Downhill running induced significant EIMD, with time effects (all p < 0.001) for the delayed onset of muscle soreness (visual analogue scale), countermovement jump height, isometric midthigh pull force, maximal voluntary isometric contraction force, running economy, and biomarkers of muscle damage (creatine kinase) and inflammation (interleukin-6, high-sensitivity C-reactive protein). However, no group or interaction effects (all p > 0.05) were observed for any of the outcome measures. Conclusions: These findings suggest that the post-exercise consumption of CH or DP does not improve indices of EIMD during the acute recovery period in recreationally active males.Item Pilot study on the effects of preservatives on corneal collagen parameters measured by small angle X-ray scattering analysis(BioMed Central Ltd, 2021-12) Kelly SJ; duPlessis L; Soley J; Noble F; Wells HC; Kelly PJOBJECTIVE: Small angle X-ray scattering (SAXS) analysis is a sensitive way of determining the ultrastructure of collagen in tissues. Little is known about how parameters measured by SAXS are affected by preservatives commonly used to prevent autolysis. We determined the effects of formalin, glutaraldehyde, Triton X and saline on measurements of fibril diameter, fibril diameter distribution, and D-spacing of corneal collagen using SAXS analysis. RESULTS: Compared to sections of sheep and cats' corneas stored frozen as controls, those preserved in 5% glutaraldehyde and 10% formalin had significantly larger mean collagen fibril diameters, increased fibril diameter distribution and decreased D-spacing. Sections of corneas preserved in Triton X had significantly increased collagen fibril diameters and decreased fibril diameter distribution. Those preserved in 0.9% saline had significantly increased mean collagen fibril diameters and decreased diameter distributions. Subjectively, the corneas preserved in 5% glutaraldehyde and 10% formalin maintained their transparency but those in Triton X and 0.9% saline became opaque. Subjective morphological assessment of transmission electron microscope images of corneas supported the SAXS data. Workers using SAXS analysis to characterize collagen should be alerted to changes that can be introduced by common preservatives in which their samples may have been stored.Item Collagen dehydration(Elsevier BV, 1/09/2022) Haverkamp RG; Sizeland KH; Wells HC; Kamma-Lorger CType I collagen is a ubiquitous structural protein in animal tissues. It is normally present in a hydrated form. However, collagen is very dependent on associated water for its mechanical properties. In skin, where type I collagen is dominant, there is a longstanding concern that the skin and therefore collagen may partially dry out and result in structural degradation. Here we show that dehydration of type I collagen fibrils, using 2-propanol, results in a two-stage dehydration process. Initially, the fibrils do not change length, i.e. the D-period remains constant, but shrinkage occurs within the fibrils by an increase in the gap region and a decrease in the overlap region within a D-band and a shortening of the helical turn distance and fibril diameter. Only with further dehydration does the length of the collagen fibril decrease (a decrease in D-period). This mechanism explains why collagen materials are resistant to gross structural change in the early stages of dehydration and shows why they may then suffer from sudden external shrinkage with further dehydration.Item Relative orientation of collagen molecules within a fibril: A homology model for homo sapiens type I collagen.(Taylor & Francis, 30/01/2018) Collier TA; Nash A; Birch HL; de Leeuw NHType I collagen is an essential extracellular protein that plays an important structural role in tissues that require high tensile strength. However, owing to the molecule’s size, to date no experimental structural data are available for the Homo sapiens species. Therefore, there is a real need to develop a reliable homology model and a method to study the packing of the collagen molecules within the fibril. Through the use of the homology model and implementation of a novel simulation technique, we have ascertained the orientations of the collagen molecules within a fibril, which is currently below the resolution limit of experimental techniques. The longitudinal orientation of collagen molecules within a fibril has a significant effect on the mechanical and biological properties of the fibril, owing to the different amino acid side-chains available at the interface between the molecules.Item Effect on the mechanical properties of type I collagen of intra-molecular lysine-arginine derived advanced glycation end-product cross-linking(Elsevier, 28/11/2017) Collier TA; Nash A; Birch HL; de Leeuw NHNon-enzymatic advanced glycation end product (AGE) cross-linking of collagen molecules has been hypothesised to result in significant changes to the mechanical properties of the connective tissues within the body, potentially resulting in a number of age related diseases. We have investigated the effect of two of these cross-links, glucosepane and DOGDIC, on the tensile and lateral moduli of the collagen molecule through the use of a steered molecular dynamics approach, using previously identified preferential formation sites for intra-molecular cross-links. Our results show that the presence of intra-molecular AGE cross-links increases the tensile and lateral Young’s moduli in the low strain domain by between 3.0 - 8.5 % and 2.9 - 60.3 % respectively, with little effect exhibited at higher strains.
