Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
6 results
Search Results
Item Investigating animals and environments in contact with leptospirosis patients in Aotearoa New Zealand reveals complex exposure pathways.(Taylor and Francis Group, 2025-02-12) Benschop J; Collins-Emerson JM; Vallee E; Prinsen G; Yeung P; Wright J; Littlejohn S; Douwes J; Fayaz A; Marshall JC; Baker MG; Quin T; Nisa SCASE HISTORY: Three human leptospirosis cases from a case-control study were recruited for in-contact animal and environment sampling and Leptospira testing between October 2020 and December 2021. These cases were selected because of regular exposure to livestock, pets, and/or wildlife, and sampling was carried out on their farms or lifestyle blocks (sites A-C), with veterinarians overseeing the process for livestock, and cases collecting environmental and wildlife samples. LABORATORY FINDINGS: Across the three sites, a total of 137 cattle, > 40 sheep, 28 possums, six dogs, six rats, three pigs and three rabbits were tested. Herd serology results on Site A, a dairy farm, showed infection with Tarassovi and Pomona; urinary shedding showed Leptospira borgpetersenii str. Pacifica. Animals were vaccinated against Hardjo, Pomona and Copenhageni. The farmer was diagnosed with Ballum. On Site B, a beef and sheep farm, serology showed infection with Pomona; animals were not vaccinated, and the farmer was diagnosed with Hardjo. On Site C, cattle were shedding L. borgpetersenii; animals were not vaccinated, and the case's serovar was indeterminate. Six wild animals associated with Sites A and C and one environmental sample from Site A were positive for pathogenic Leptospira by PCR. CONCLUSION: These findings highlight the complexity of potential exposures and the difficulty in identifying infection sources for human cases. This reinforces the need for multiple preventive measures such as animal vaccination, the use of personal protective equipment, pest control, and general awareness of leptospirosis to reduce infection risk in agricultural settings. CLINICAL RELEVANCE: Farms with unvaccinated livestock had Leptospira infections, highlighting the importance of animal vaccination. Infections amongst stock that were vaccinated emphasise the importance of best practice vaccination recommendations and pest control. Abbreviations: MAT: Microscopic agglutination test; PIC: Person in charge; PPE: Personalprotective equipmentItem Dairy farmer, engagement and understanding of One Health and antimicrobial resistance - a pilot survey from the lower north island of Aotearoa New Zealand.(BioMed Central Ltd. Part of Springer Nature, 2024-08-01) Arden K; Rosanowski SM; Laven RA; Mueller KRBACKGROUND: Reducing antimicrobial resistance (AMR) requires a multidisciplinary One Health approach, which necessitates buy-in from all stakeholders. In Aotearoa New Zealand, where the dairy industry is one of the largest users of antimicrobials, there are ongoing efforts to optimise antimicrobial usage (AMU) to minimise the development of AMR. These include regulations around the veterinary authorisation of the use of antibiotics by farmers without the need for a specific prescription ("the RVM process") and programmes such as the New Zealand Veterinary Association's antibiotic 'Traffic Light System'. The goal of this pilot survey was to develop and trial a questionnaire to determine how much Aotearoa dairy farmers understand about One Health, AMR, the RVM process and how their actions regarding AMU affect the wider environment. METHODS: A 55-question semi-structured questionnaire was piloted on 15 dairy farms in the Lower North Island of Aotearoa New Zealand via an in-person semi-structured interview between September and November 2021. RESULTS: None of the interviewed farmers could define the term One Health. However, the majority found the RVM process to be of use on their farm, although admitted they generally felt frustration regarding AMR, seeing it as a blockage to productivity, and lacked awareness regarding how their actions were related to its development. Of the farmers interviewed over half had not heard of the traffic light system, and of those who had, one admitted they refused to adhere to it. CONCLUSIONS: This survey's novel findings have highlighted that there are notable gaps within dairy farmer understanding of AMU, AMR and One Health as well as highlighting that veterinarians could do more to keep their clients informed of their important role within One Health. There is still a lot more work to do with regards to vets, farmers and industry representatives working together to embrace One Health. Simple solutions would be to encourage farmers returning unused drugs to their veterinarians for correct disposal and to actively engage farmers further regarding AMU and AMR, so that these end-product users do not feel disconnected from the process.Item Policy and science for global health security: Shaping the course of international health(MDPI (Basel, Switzerland), 2019-06) Berger KM; Wood JLN; Jenkins B; Olsen J; Morse SS; Gresham L; Root JJ; Rush M; Pigott D; Winkleman T; Moore M; Gillespie TR; Nuzzo JB; Han BA; Olinger P; Karesh WB; Mills JN; Annelli JF; Barnabei J; Lucey D; Hayman DTSThe global burden of infectious diseases and the increased attention to natural, accidental, and deliberate biological threats has resulted in significant investment in infectious disease research. Translating the results of these studies to inform prevention, detection, and response efforts often can be challenging, especially if prior relationships and communications have not been established with decision-makers. Whatever scientific information is shared with decision-makers before, during, and after public health emergencies is highly dependent on the individuals or organizations who are communicating with policy-makers. This article briefly describes the landscape of stakeholders involved in information-sharing before and during emergencies. We identify critical gaps in translation of scientific expertise and results, and biosafety and biosecurity measures to public health policy and practice with a focus on One Health and zoonotic diseases. Finally, we conclude by exploring ways of improving communication and funding, both of which help to address the identified gaps. By leveraging existing scientific information (from both the natural and social sciences) in the public health decision-making process, large-scale outbreaks may be averted even in low-income countries.Item One Health: A new definition for a sustainable and healthy future(PLOS, 2022-06-23) One Health High-Level Expert Panel (OHHLEP); Adisasmito WB; Almuhairi S; Behravesh CB; Bilivogui P; Bukachi SA; Casas N; Cediel Becerra N; Charron DF; Chaudhary A; Ciacci Zanella JR; Cunningham AA; Dar O; Debnath N; Dungu B; Farag E; Gao GF; Hayman DTS; Khaitsa M; Koopmans MPG; Machalaba C; Mackenzie JS; Markotter W; Mettenleiter TC; Morand S; Smolenskiy V; Zhou L; Dvorin JDItem Cetacean Strandings From Space: Challenges and Opportunities of Very High Resolution Satellites for the Remote Monitoring of Cetacean Mass Strandings(Frontiers Media S.A., 2021-11-18) Clarke PJ; Cubaynes HC; Stockin KA; Olavarría C; de Vos A; Fretwell PT; Jackson JA; Reverdin GThe study of cetacean strandings was globally recognised as a priority topic at the 2019 World Marine Mammal Conference, in recognition of its importance for understanding the threats to cetacean communities and, more broadly, the threats to ecosystem and human health. Rising multifaceted anthropogenic and environmental threats across the globe, as well as whale population recovery from exploitation in some areas, are likely to coincide with an increase in reported strandings. However, the current methods to monitor strandings are inherently biased towards populated coastlines, highlighting the need for additional surveying tools in remote regions. Very High Resolution (VHR) satellite imagery offers the prospect of upscaling monitoring of mass strandings in minimally populated/unpopulated and inaccessible areas, over broad spatial and temporal scales, supporting and informing intervention on the ground, and can be used to retrospectively analyse historical stranding events. Here we (1) compile global strandings information to identify the current data gaps; (2) discuss the opportunities and challenges of using VHR satellite imagery to monitor strandings using the case study of the largest known baleen whale mass stranding event (3) consider where satellites hold the greatest potential for monitoring strandings remotely and; (4) outline a roadmap for satellite monitoring. To utilise this platform to monitor mass strandings over global scales, considerable technical, practical and environmental challenges need to be addressed and there needs to be inclusivity in opportunity from the onset, through knowledge sharing and equality of access to imagery.Item Transmission Dynamics of Shiga Toxin-Producing Escherichia coli in New Zealand Cattle from Farm to Slaughter.(American Society for Microbiology, 2021-05-11) Browne AS; Midwinter AC; Withers H; Cookson AL; Biggs PJ; Marshall JC; Benschop J; Hathaway S; Rogers L; Nisa S; Hranac CR; Winkleman T; French NPCattle are asymptomatic carriers of Shiga toxin-producing Escherichiacoli (STEC) strains that can cause serious illness or death in humans. In New Zealand, contact with cattle feces and living near cattle populations are known risk factors for human STEC infection. Contamination of fresh meat with STEC strains also leads to the potential for rejection of consignments by importing countries. We used a combination of PCR/matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) and whole-genome sequencing (WGS) to evaluate the presence and transmission of STEC on farms and in processing plants to better understand the potential pathways for human exposure and thus mitigate risk. Animal and environmental samples (n = 2,580) were collected from six farms and three meat processing plants in New Zealand during multiple sampling sessions in spring of 2015 and 2016. PCR/MALDI-TOF analysis revealed that 6.2% were positive for "Top 7" STEC. Top 7 STEC strains were identified in all sample sources (n = 17) tested. A marked increase in Top 7 STEC prevalence was observed between calf hides on farm (6.3% prevalence) and calf hides at processing plants (25.1% prevalence). Whole-genome sequencing was performed on Top 7 STEC bacterial isolates (n = 40). Analysis of STEC O26 (n = 25 isolates) revealed relatively low genetic diversity on individual farms, consistent with the presence of a resident strain disseminated within the farm environment. Public health efforts should focus on minimizing human contact with fecal material on farms and during handling, transport, and slaughter of calves. Meat processing plants should focus on minimizing cross-contamination between the hides of calves in a cohort during transport, lairage, and slaughter. IMPORTANCE Cattle are asymptomatic carriers of Shiga toxin-producing E. coli (STEC) strains, which can cause serious illness or death in humans. Contact with cattle feces and living near cattle are known risk factors for human STEC infection. This study evaluated STEC carriage in young calves and the farm environment with an in-depth evaluation of six farms and three meat processing plants over 2 years. An advanced molecular detection method and whole-genome sequencing were used to provide a detailed evaluation of the transmission of STEC both within and between farms. The study revealed widespread STEC contamination within the farm environment, but no evidence of recent spread between farms. Contamination of young dairy calf hides increased following transport and holding at meat processing plants. The elimination of STEC in farm environments may be very difficult given the multiple transmission routes; interventions should be targeted at decreasing fecal contamination of calf hides during transport, lairage, and processing.
