Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 10 of 10
  • Item
    Characterizing the dynamics of the rumen microbiota, its metabolites, and blood metabolites across reproductive stages in Small-tailed Han sheep.
    (American Society for Microbiology, 2023-11-10) Sha Y; Liu X; Pu X; He Y; Wang J; Zhao S; Shao P; Wang F; Xie Z; Chen X; Yang W
    Different reproductive stages of mammals involve complex biological processes, and the intestinal microbiota, as an endocrine organ or an “invisible organ,” is involved in the regulation of hormone levels, immune function, and metabolism. However, the effects of the rumen microbiota, its metabolites, and blood metabolites on the reproductive performance of ruminants remain unclear. This study revealed that the Prevotella abundance increased significantly during pregnancy (P < 0.01); the Fibrobacter abundance increased significantly during lactation (P < 0.05); and rumen microbial carbohydrate metabolism, glucose biosynthesis, and metabolic functions were significantly enriched during pregnancy (P < 0.05). Microbial metabolic profile analysis showed that the differentially abundant microbial metabolites during pregnancy and lactation were mainly enriched in the biosynthesis of ubiquinone and other terpenoid quinones, and there was a certain correlation with the microbiota. Among them, sapindoside A was increased during pregnancy, nicotinamide riboside and β-cryptoxanthin were reduced during pregnancy, and L-tryptophan was significantly increased during lactation. In addition, the volatile fatty acid levels in lactation were significantly higher than those in non-pregnancy and pregnancy (P < 0.05), and the NH3-N content during pregnancy was significantly higher than that during lactation and non-pregnancy (P < 0.05). Moreover, there were differences in the serum metabolite levels at different reproductive stages, and similar metabolites existed when comparing the rumen metabolites, which were mainly enriched in arachidonic acid metabolism, vitamin B6 metabolism, and ABC transporter protein, resulting in significantly higher serum IgA and IgM levels during lactation than during non-pregnancy and pregnancy (P < 0.05).
  • Item
    Interaction between Rumen Epithelial miRNAs-Microbiota-Metabolites in Response to Cold-Season Nutritional Stress in Tibetan Sheep.
    (MDPI (Basel, Switzerland), 2023-09-23) Lv W; Sha Y; Liu X; He Y; Hu J; Wang J; Li S; Guo X; Shao P; Zhao F; Li M; Freking B
    Tibetan sheep are already well adapted to cold season nutrient stress on the Tibetan Plateau. Rumen, an important nutrient for metabolism and as an absorption organ in ruminants, plays a vital role in the cold stress adaptations of Tibetan sheep. Ruminal microbiota also plays an indispensable role in rumen function. In this study, combined multiomics data were utilized to comprehensively analyze the interaction mechanism between rumen epithelial miRNAs and microbiota and their metabolites in Tibetan sheep under nutrient stress in the cold season. A total of 949 miRNAs were identified in the rumen epithelium of both cold and warm seasons. A total of 62 differentially expressed (DE) miRNAs were screened using FC > 1.5 and p value < 0.01, and a total of 20,206 targeted genes were predicted by DE miRNAs. KEGG enrichment analysis revealed that DE miRNA-targeted genes were mainly enriched in axon guidance(ko04360), tight junction(ko04530), inflammatory mediator regulation of TRP channels(ko04750) and metabolism-related pathways. Correlation analysis revealed that rumen microbiota, rumen VFAs and DE miRNAs were all correlated. Further study revealed that the targeted genes of cold and warm season rumen epithelial DE miRNAs were coenriched with differential metabolites of microbiota in glycerophospholipid metabolism (ko00564), apoptosis (ko04210), inflammatory mediator regulation of TRP channels (ko04750), small cell lung cancer (ko05222), and choline metabolism in cancer (ko05231) pathways. There are several interactions between Tibetan sheep rumen epithelial miRNAs, rumen microbiota, and microbial metabolites, mainly through maintaining rumen epithelial barrier function and host homeostasis of choline and cholesterol, improving host immunity, and promoting energy metabolism pathways, thus enabling Tibetan sheep to effectively respond to cold season nutrient stress. The results also suggest that rumen microbiota have coevolved with their hosts to improve the adaptive capacity of Tibetan sheep to cold season nutrient stress, providing a new perspective for the study of cold season nutritional stress adaptation in Tibetan sheep.
  • Item
    Synergistic Responses of Tibetan Sheep Rumen Microbiota, Metabolites, and the Host to the Plateau Environment.
    (MDPI (Basel, Switzerland), 2023-10-03) Sha Y; Guo X; He Y; Li W; Liu X; Zhao S; Hu J; Wang J; Li S; Zhao Z; Hao Z; Miccheli A; Docea AO; Fukui H
    Plateau adaptation in animals involves genetic mechanisms as well as coevolutionary mechanisms of the microbiota and metabolome of the animal. Therefore, the characteristics of the rumen microbiome and metabolome, transcriptome, and serum metabolome of Tibetan sheep at different altitudes (4500 m, 3500 m, and 2500 m) were analyzed. The results showed that the rumen differential metabolites at 3500 m and 4500 m were mainly enriched in amino acid metabolism, lipid metabolism, and carbohydrate metabolism, and there was a significant correlation with microbiota. The differentially expressed genes and metabolites at middle and high altitudes were coenriched in asthma, arachidonic acid metabolism, and butanoate and propanoate metabolism. In addition, the serum differential metabolites at 3500 m and 4500 m were mainly enriched in amino acid metabolism, lipid metabolism, and metabolism of xenobiotics by cytochrome P450, and they were also related to microbiota. Further analysis revealed that rumen metabolites accounted for 7.65% of serum metabolites. These common metabolites were mainly enriched in metabolic pathways and were significantly correlated with host genes (p < 0.05). This study found that microbiota, metabolites, and epithelial genes were coenriched in pathways related to lipid metabolism, energy metabolism, and immune metabolism, which may be involved in the regulation of Tibetan sheep adaptation to plateau environmental changes.
  • Item
    Rumen Epithelial Development- and Metabolism-Related Genes Regulate Their Micromorphology and VFAs Mediating Plateau Adaptability at Different Ages in Tibetan Sheep.
    (MDPI (Basel, Switzerland), 2022-12-16) Sha Y; He Y; Liu X; Zhao S; Hu J; Wang J; Li S; Li W; Shi B; Hao Z; Martinez-Pastor F
    The rumen is an important hallmark organ of ruminants and plays an important role in the metabolism and immune barrier of Tibetan sheep on the Plateau. However, there are few studies on rumen development and metabolism regulation in Tibetan sheep at different ages. Here, we comprehensively analyzed the immune function, fermentation function, rumen epithelial micromorphology and transcriptome profile of Tibetan sheep at different ages. The results showed that the concentration of IgG decreased and the concentration of IgM increased with age (p < 0.05), and the highest concentration of IgA was observed at 1.5 and 3.5 years of age. In terms of rumen fermentation characteristics, VFAs of 4-month-old lambs were the highest, followed by VFAs and NH3-N of Tibetan sheep at 3.5 years of age. Hematoxylin-eosin staining and transmission electron microscopy section examination of rumen epithelial tissue showed that the rumen papilla width increased with age (p < 0.001), the thickness of the stratum corneum decreased, the cells in the stratum corneum showed accelerated migration and the thickness of the rumen muscle layer increased (p < 0.001). Desmosomal junctions between the layers of rumen epithelium increased at 1.5 and 3.5 years old, forming a compact barrier structure, and the basal layer had more mitochondria involved in the regulation of energy metabolism. RNA-seq analysis revealed that a total of 1006 differentially expressed genes (DEGs) were identified at four ages. The DEGs of Tibetan sheep aged 4 months and 6 years were mainly enriched in the oxidation−reduction process and ISG15-protein conjugation pathway. The 1.5 and 3.5-year-olds were mainly enriched in skeletal muscle thin filament assembly, mesenchyme migration and the tight junction pathway. WGCNA showed that DEGs related to rumen microbiota metabolite VFAs and epithelial morphology were enriched in “Metabolism of xenobiotics by cytochrome P450, PPAR signaling pathway, Butanoate metabolism pathways” and participated in the regulation of rumen epithelial immune and fermentation metabolism functions of Tibetan sheep at different ages. This study systematically revealed the regulatory mechanism of rumen epithelial development and metabolism in the plateau adaptation of Tibetan sheep, providing a new approach for the study of plateau adaptation.
  • Item
    Response of Ruminal Microbiota-Host Gene Interaction to High-Altitude Environments in Tibetan Sheep.
    (MDPI (Basel, Switzerland), 2022-10-17) Sha Y; Ren Y; Zhao S; He Y; Guo X; Pu X; Li W; Liu X; Wang J; Li S; Wahli W
    Altitude is the main external environmental pressure affecting the production performance of Tibetan sheep, and the adaptive evolution of many years has formed a certain response mechanism. However, there are few reports on the response of ruminal microbiota and host genomes of Tibetan sheep to high-altitude environments. Here, we conducted an integrated analysis of volatile fatty acids (VFAs), microbial diversity (16S rRNA), epithelial morphology, and epithelial transcriptome in the rumen of Tibetan sheep at different altitudes to understand the changes in ruminal microbiota−host interaction in response to high altitude. The differences in the nutritional quality of forage at different altitudes, especially the differences in fiber content (ADF/NDF), led to changes in rumen VFAs of Tibetan sheep, in which the A/P value (acetic acid/propionic acid) was significantly decreased (p < 0.05). In addition, the concentrations of IgA and IgG in Middle-altitude (MA) and High-altitude Tibetan sheep (HA) were significantly increased (p < 0.05), while the concentrations of IgM were significantly increased in MA (p < 0.05). Morphological results showed that the width of the rumen papilla and the thickness of the basal layer increased significantly in HA Tibetan sheep (p < 0.05). The 16S rRNA analysis found that the rumen microbial diversity of Tibetan sheep gradually decreased with increasing altitude, and there were some differences in phylum- and genus-level microbes at the three altitudes. RDA analysis found that the abundance of the Rikenellaceae RC9 gut group and the Ruminococcaceae NK4A214 group increased with altitudes. Furthermore, a functional analysis of the KEGG microbial database found the “lipid metabolism” function of HA Tibetan sheep to be significantly enriched. WGCNA revealed that five gene modules were enriched in “energy production and conversion”, “lipid transport and metabolism”, and “defense mechanisms”, and cooperated with microbiota to regulate rumen fermentation and epithelial immune barrier function, so as to improve the metabolism and immune level of Tibetan sheep at high altitude.
  • Item
    Effect of 3-nitrooxypropanol on enteric methane emissions of feedlot cattle fed with a tempered barley-based diet with canola oil
    (Oxford University Press on behalf of the American Society of Animal Science, 2023-07-10) Almeida AK; Cowley F; McMeniman JP; Karagiannis A; Walker N; Tamassia LFM; McGrath JJ; Hegarty RS
    A dose-response experiment was designed to examine the effect of 3-nitrooxypropanol (3-NOP) on methane (CH4) emissions, rumen function and performance of feedlot cattle fed a tempered barley-based diet with canola oil. Twenty Angus steers of initial body weight (BW) of 356 ± 14.4 kg were allocated in a randomized complete block design. Initial BW was used as the blocking criterion. Cattle were housed in individual indoor pens for 112 d, including the first 21 d of adaptation followed by a 90-d finishing period when five different 3-NOP inclusion rates were compared: 0 mg/kg dry matter (DM; control), 50 mg/kg DM, 75 mg/kg DM, 100 mg/kg DM, and 125 mg/kg DM. Daily CH4 production was measured on day 7 (last day of starter diet), day 14 (last day of the first intermediate diet), and day 21 (last day of the second intermediate diet) of the adaptation period and on days 28, 49, 70, 91, and 112 of the finisher period using open circuit respiration chambers. Rumen digesta samples were collected from each steer on the day prior to chamber measurement postfeeding, and prefeeding on the day after the chamber measurement, for determination of rumen volatile fatty acids (VFA), ammonium-N, protozoa enumeration, pH, and reduction potential. Dry matter intake (DMI) was recorded daily and BW weekly. Data were analyzed in a mixed model including period, 3-NOP dose and their interaction as fixed effects, and block as a random effect. Our results demonstrated both a linear and quadratic (decreasing rate of change) effect on CH4 production (g/d) and CH4 yield (g/kg DMI) as 3-NOP dose increased (P < 0.01). The achieved mitigation for CH4 yield in our study ranged from approximately 65.5% up to 87.6% relative to control steers fed a finishing feedlot diet. Our results revealed that 3-NOP dose did not alter rumen fermentation parameters such as ammonium-N, VFA concentration nor VFA molar proportions. Although this experimental design was not focused on the effect of 3-NOP dose on feedlot performance, no negative effects of any 3-NOP dose were detected on animal production parameters. Ultimately, the knowledge on the CH4 suppression pattern of 3-NOP may facilitate sustainable pathways for the feedlot industry to lower its carbon footprint.
  • Item
    Bioactive metabolites of Asparagopsis stabilized in canola oil completely suppress methane emissions in beef cattle fed a feedlot diet
    (Oxford University Press on behalf of the American Society of Animal Science., 2024-04-22) Cowley FC; Kinley RD; Mackenzie SL; Fortes MRS; Palmieri C; Simanungkalit G; Almeida AK; Roque BM
    Asparagopsis taxiformis (Asparagopsis) has been shown to be highly efficacious at inhibiting the production of methane (CH4) in ruminants. To date, Asparagopsis has been primarily produced as a dietary supplement by freeze-drying to retain the volatile bioactive compound bromoform (CHBr3) in the product. Steeping of Asparagopsis bioactive compounds into a vegetable oil carrier (Asp-Oil) is an alternative method of stabilizing Asparagopsis as a ruminant feed additive. A dose-response experimental design used 3 Asp-Oil-canola oil blends, low, medium, and high Asp-Oil which provided 17, 34, and 51 mg Asparagopsis derived CHBr3/kg dry matter intake (DMI), respectively (in addition to a zero CHBr3 canola oil control), in a tempered-barley based feedlot finisher diet, fed for 59 d to 20 Angus heifers (five replicates per treatment). On four occasions, live weight was measured and CH4 emissions were quantified in respiration chambers, and blood, rumen fluid, and fecal samples were collected. At the end of the experiment, all animals were slaughtered, with carcasses graded, and samples of meat and edible offal collected for testing of consumer sensory qualities and residues of CHBr3, bromide, and iodide. All Asp-Oil treatments reduced CH4 yield (g CH4/kg DMI, P = 0.008) from control levels, with the low, medium, and high Asp-Oil achieving 64%, 98%, and 99% reduction, respectively. Dissolved hydrogen increased linearly with increasing Asp-Oil inclusion, by more than 17-fold in the high Asp-Oil group (P = 0.017). There was no effect of Asp-Oil treatment on rumen temperature, pH, reduction potential, volatile fatty acid and ammonia production, rumen pathology, and histopathology (P > 0.10). There were no differences in animal production and carcass parameters (P > 0.10). There was no detectable CHBr3 in feces or any carcass samples (P > 0.10), and iodide and bromide residues in kidneys were at levels unlikely to lead to consumers exceeding recommended maximum intakes. Overall, Asp-Oil was found to be safe for animals and consumers of meat, and effective at reducing CH4 emissions and yield by up to 99% within the range of inclusion levels tested.
  • Item
    Genomic insights into the physiology of Quinella, an iconic uncultured rumen bacterium.
    (Nature Portfolio, 2022-10-20) Kumar S; Altermann E; Leahy SC; Jauregui R; Jonker A; Henderson G; Kittelmann S; Attwood GT; Kamke J; Waters SM; Patchett ML; Janssen PH
    Quinella is a genus of iconic rumen bacteria first reported in 1913. There are no cultures of these bacteria, and information on their physiology is scarce and contradictory. Increased abundance of Quinella was previously found in the rumens of some sheep that emit low amounts of methane (CH4) relative to their feed intake, but whether Quinella contributes to low CH4 emissions is not known. Here, we concentrate Quinella cells from sheep rumen contents, extract and sequence DNA, and reconstruct Quinella genomes that are >90% complete with as little as 0.20% contamination. Bioinformatic analyses of the encoded proteins indicate that lactate and propionate formation are major fermentation pathways. The presence of a gene encoding a potential uptake hydrogenase suggests that Quinella might be able to use free hydrogen (H2). None of the inferred metabolic pathways is predicted to produce H2, a major precursor of CH4, which is consistent with the lower CH4 emissions from those sheep with high abundances of this bacterium.
  • Item
    Aristaeella hokkaidonensis gen. nov. sp. nov. and Aristaeella lactis sp. nov., two rumen bacterial species of a novel proposed family, Aristaeellaceae fam. nov.
    (Microbiology Society, 2023-05-12) Mahoney-Kurpe SC; Palevich N; Noel SJ; Gagic D; Biggs PJ; Soni P; Reid PM; Koike S; Kobayashi Y; Janssen PH; Attwood GT; Moon CD
    Two strains of Gram-negative, anaerobic, rod-shaped bacteria, from an abundant but uncharacterized rumen bacterial group of the order 'Christensenellales', were phylogenetically and phenotypically characterized. These strains, designated R-7T and WTE2008T, shared 98.6-99.0 % sequence identity between their 16S rRNA gene sequences. R-7T and WTE2008T clustered together on a distinct branch from other Christensenellaceae strains and had <88.1 % sequence identity to the closest type-strain sequence from Luoshenia tenuis NSJ-44T. The genome sequences of R-7T and WTE2008T had 83.6 % average nucleotide identity to each other, and taxonomic assignment using the Genome Taxonomy Database indicates these are separate species within a novel family of the order 'Christensenellales'. Cells of R-7T and WTE2008T lacked any obvious appendages and their cell wall ultra-structures were characteristic of Gram-negative bacteria. The five most abundant cellular fatty acids of both strains were C16 : 0, C16 : 0 iso, C17 : 0 anteiso, C18 : 0 and C15 : 0 anteiso. The strains used a wide range of the 23 soluble carbon sources tested, and grew best on cellobiose, but not on sugar-alcohols. Xylan and pectin were fermented by both strains, but not cellulose. Acetate, hydrogen, ethanol and lactate were the major fermentation end products. R-7T produced considerably more hydrogen than WTE2008T, which produced more lactate. Based on these analyses, Aristaeellaceae fam. nov. and Aristaeella gen. nov., with type species Aristaeella hokkaidonensis sp. nov., are proposed. Strains R-7T (=DSM 112795T=JCM 34733T) and WTE2008T (=DSM 112788T=JCM 34734T) are the proposed type strains for Aristaeella hokkaidonensis sp. nov. and Aristaeella lactis sp. nov., respectively.
  • Item
    In vitro gas production and rumen fermentation profile of fresh and ensiled genetically modified high–metabolizable energy ryegrass
    (FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association, 2020-03) Winichayakul S; Beechey-Gradwell Z; Muetzel S; Molano G; Crowther T; Lewis S; Xue H; Burke J; Bryan G; Roberts NJ
    We previously generated a high–metabolizable energy (HME) perennial ryegrass (Lolium perenne) by genetically modifying the plant to increase the leaf lipid content. Although substantial progress has been made toward characterizing physiological changes of HME ryegrass, very limited information exists for feeding value and its suitability for adoption into the pastoral system. In this study, independent HME ryegrass lines with a range of elevated leaf lipid concentrations were analyzed for changes in fatty acids and possible associated changes in the broader nutritional profile, including the gross energy, which was found to increase by 6.8%. Because ryegrass is often ensiled and fermentation in the rumen leads to biohydrogenation of fatty acids as well as enteric methane production, we sought to investigate these effects on HME ryegrass. This was achieved by performing mini-scale silos and using an automated gas measurement system to incubate the material in rumen fluid in vitro for 24 h. Our study included treatments comprising 3 independent HME ryegrass genotypes and wild-type control materials prepared fresh and as silage, employing in total 5 incubation studies, using rumen fluids collected from 4 nonlactating Jersey × Holstein cows. At intervals during the incubation, the production of gases, volatile fatty acids, and the degree of biohydrogenation were measured. Statistical data analysis indicated that differences in the nutritional compositions of the ensiled materials largely reflected those of their fresh counterparts. Incubation of both fresh and ensiled HME ryegrass in rumen fluid resulted in: (1) a greater percentage of valuable unsaturated fatty acids compared with the control; (2) a significant reduction of butyrate; and (3) a 10 to 15% decrease in the methane proportion of the total gas production. We conclude that ensiling could be a convenient option for preserving HME as a locally produced high-value supplementary feed; however, large-scale application needs to be investigated. In this paper we discuss the potential use of HME ryegrass to enhancing forage feeding value and the potential environmental benefits to the pastoral agriculture industry.