Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Evaluation of methane prediction equations for Australian feedlot cattle fed barley and wheat-based diets
    (CSIRO Publishing, Clayton, Victoria, Australia, 2025-03-13) Almeida AK; McMeniman JP; Van der Saag MR; Cowley FC; Dougherty J
    Context. Accurately predicting baseline methane (CH4) emissions from beef cattle is of utmost importance for the beef industry and governments alike. It serves as a vital component for accounting as part of national GHG inventories and enables the development and implementation of greenhouse gas (GHG) mitigation strategies. Aims. The aim of this study was to evaluate equations in the literature for predicting CH4 emissions of beef cattle when fed barley and wheat-based diets typical of the Australian feedlot industry. Then, propose the best prediction equation to accurately reflect CH4 emissions of feedlot cattle under Australian conditions. Methods. As part of the project, a large database of methane measurements performed in respiratory calorimeters taken from beef cattle fed a range of feedlot diets was assembled. The dataset included a wide range of factors that are known to impact CH4 production, such as dry matter intake (DMI), ether extract (EE), crude protein (CP), and cell wall components, amongst others. The database contained 713 individual measurements, from 175 animals and 12 studies. Key results. The equation currently utilised by the Australian National Inventory Report had poor accuracy, with mean bias overprediction of 115 g/day (P < 0.01), along with significant linear bias (P < 0.01) and poor precision (r2 = 0.05). The mean bias was 144% of average observed CH4 production. All evaluated equations lacked accuracy and precision in predicting CH4 emissions for the diets fed in this study. Roughage concentrations (DM basis) ranged from 5.54 to 43.0% with a mean of 20.5 ± 11.1%. Given these findings, two specific equations were developed, (1) a CH4 yield equation based on DMI: CH4 (g/day) = 9.89 ± 1.54 × DMI (n = 384; P < 0.01; root mean square error (RMSE) = 32.6 g/day; r2 = 0.85); and (2) an equation based on DMI, neutral detergent fibre (NDF) and EE: CH4 (g/day) = 5.11 ± 1.58 × DMI − 4.00 ± 0.821 × EE + 2.26 ± 0.125 × NDF (n = 384; P < 0.05; RMSE = 22.2 g/day; r2 = 0.91). When validated, the second equation yielded a mean bias of 6.10 g overprediction, with no linear bias, and better fit than any of the literature equations. Conclusions. Based on a thorough model evaluation, our findings support the need to revise current methods to predict CH4 for barley and wheat-based diets. Implications. This study contributes to developing accurate estimations of enteric CH4 emissions for cattle fed barley and wheat-based diets.
  • Item
    High steam-conditioning temperature during the pelleting process impairs growth performance and nutrient utilization in broiler starters fed barley-based diets, regardless of carbohydrase supplementation
    (Elsevier Inc. on behalf of Poultry Science Association Inc., 2021-08) Perera WNU; Abdollahi MR; Zaefarian F; Wester TJ; Ravindran V
    The influence of supplemental carbohydrase (Carb) and conditioning temperature (CT) on growth performance, nutrient utilization and intestinal morphometry of broilers (d 1–21) fed barley-based diets was examined in a 2 × 3 factorial arrangement, evaluating 2 levels of Carb (0 and 150 g/tonne of feed) and three CT (60, 74, and 88°C). A total of 288, 1-day-old male broilers (8 birds/cage; 6 cages/treatment) were used. The activities of endo-1,4-β- glucanase, endo-1,3 (4)-β-glucanase and endo-1,4-β-xylanase in the Carb were 800 BGU/g, 700 BGU/g and 2,700 XU/g, respectively. On d 21, ileal digesta was collected for the determination of nutrient digestibility. There was no significant interaction between Carb and CT for any tested parameter. Supplemental Carb, regardless of CT, increased weight gain (WG; P < 0.05) and reduced feed per gain (F/G; P < 0.001) by 30 g/bird and 6.5 points, respectively. Increasing CT to 88°C reduced (P < 0.05) WG, but increased (P < 0.05) F/G compared to the diets conditioned at 60° and 74°C. Regardless of CT, Carb enhanced (P < 0.05) the digestibility of starch and AMEn by 1.15% and 32 kcal/kg, respectively. Compared to the diets conditioned at 60° and 74°C, CT at 88°C reduced (P < 0.05) digestibility of dry matter, nitrogen, phosphorus, gross energy, and AMEn. Birds fed diets conditioned at 88°C showed lower (P < 0.05) starch digestibility compared to those fed diets conditioned at 60°C. Conditioning at 88°C increased (P < 0.05) jejunal digesta viscosity by 10.2% compared to diets conditioned at 60° and 74°C. Overall, Carb supplementation improved WG, F/G, starch digestibility and AMEn in broilers fed barley-based diets, irrespective of CT applied. Conditioning barley-based diets at 88°C impaired the ability of birds to utilize nitrogen, starch, phosphorus and energy, and consequently deteriorated WG and F/G. The lack of significant interactions between Carb and CT indicated that negative impacts caused by high CT on bird performance and nutrient utilization occurred regardless of Carb enzyme supplementation. Supplemental Carb per se could not remedy the adverse effects of high CT.
  • Item
    Barley, an Undervalued Cereal for Poultry Diets: Limitations and Opportunities
    (MDPI (Basel, Switzerland), 2022-10-01) Perera WNU; Abdollahi MR; Zaefarian F; Wester TJ; Ravindran V
    The supply of conventional cereal grains, especially of maize, will be a significant constraint to the future growth of the poultry industry. Various alternative feed ingredients are being tested to replace maize in poultry diets. Barley (Hordeum vulgare L.) is one such feed ingredient, the use of which remains limited in poultry diets due to its low metabolisable energy, presence of anti-nutritive, soluble non-starch polysaccharides and consequent inter-cultivar variability. Differences in research methodologies used in published studies have also contributed to the inconsistent findings, preventing a good understanding of the nutritional value of barley for poultry. The importance of using accurate nutrient profiles, specifically metabolisable energy and digestible amino acids, for specific barley cultivars to formulate barley-based diets is emphasised. Nutritionists should also pay close attention to feed processing conditions tailored to the specific barley cultivars to increase the barley inclusion in poultry diets.
  • Item
    Influence of Age on the Standardized Ileal Amino Acid Digestibility of Corn and Barley in Broilers
    (MDPI (Basel, Switzerland), 2021-12) Barua M; Abdollahi MR; Zaefarian F; Wester TJ; Girish CK; Chrystal PV; Ravindran V
    The aim of this study was to determine the standardized ileal digestibility coefficients (SIDCs) of nitrogen (N) and amino acids (AAs) in corn and barley at six different ages (days 7, 14, 21, 28, 35 and 42) of broilers using the direct method. The apparent AA digestibility coefficients were corrected using age-appropriate basal endogenous AA losses. No age effect (p > 0.05) was noted for the SIDC of N in corn. The average SIDC of indispensable AAs (IAAs) and total AAs (TAAs) was influenced in a quadratic manner (p < 0.05) with the values being higher at day 7 that decreased at day 14, increased and plateaued between days 21 and 35 and dropped again at day 42. The average SIDC of dispensable AAs (DAAs) was influenced linearly (p < 0.05). In barley, the SIDC of N and average IAAs, DAAs and TAAs was affected (quadratic; p < 0.001) by age. The digestibility increased from day 7 to 21 and then plateaued up to day 42. The present findings confirm that the SIDC of AA in corn and barley are influenced by broiler age and that the age effect on AA digestibility may need to be considered for precise feed formulation.