Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Oral and Faecal Viromes of New Zealand Calves on Pasture With an Idiopathic Ill-Thrift Syndrome
    (John Wiley and Sons Ltd, 2025-07-28) Grimwood RM; Darnley JA; O’Connell JP; Hunt H; Taylor HS; Lawrence KE; Abbott MBW; Jauregui R; Geoghegan JL; Zhai S-L
    Since 2015, an idiopathic ill-thrift syndrome featuring diarrhoea and, in some cases, gastrointestinal ulceration has been reported in weaned New Zealand dairy calves. Similar syndromes have been described in the British Isles and Australia, but investigations in New Zealand have yet to identify a specific cause. Notably, the viromes of affected calves remain understudied. We conducted metatranscriptomic analyses of oral and faecal viromes in 11 calves from a dairy farm in Taranaki, New Zealand, experiencing an outbreak of this syndrome. This included nine calves showing clinical signs. Our analysis identified 18 bovine-associated viruses across two DNA and three RNA viral families, including six novel species. Oral viromes were dominated by Pseudocowpox virus, which was detected in all calves with oral lesions. Faecal viromes were more diverse, featuring adenoviruses, caliciviruses, astroviruses and picornaviruses. Bovine bopivirus, from the Picornaviridae family and previously unreported in New Zealand, was significantly associated with calves showing oral lesions and diarrhoea, indicating a possible link to disease, though its role remains unclear. The diverse viral communities of the calves complicate the identification of a single causative agent. Importantly, no novel viruses were significantly associated with the syndrome, and the viromes closely resembled those found in cattle globally. These findings suggest the syndrome likely has a multifactorial origin involving nutritional, management and environmental factors rather than being driven primarily by known or novel viruses. Further, research across regions and seasons is recommended to clarify the role of viruses in idiopathic ill-thrift among New Zealand calves.
  • Item
    Sire Effects on Birth Weight, Gestation Length, and Pre-Weaning Growth of Beef-Cross-Dairy Calves: A Case Study in New Zealand
    (MDPI (Basel, Switzerland), 2021-09-01) Coleman L; Back P; Blair H; López-Villalobos N; Hickson R; Meyer U
    Production of beef-cross-dairy calves from dairy cows increases the value of non-replacement calves born to the dairy herd. The use of beef-breed sires may impact on calf birth weight, gestation length and pre-weaning growth rate of calves, which in turn influences the profitability of the dairy farm. The aim of this case study was to compare the birth weight, gestation length, and pre-weaning growth of progeny born to mixed-aged dairy cows on a single farm which were artificially bred to a selection of Angus and Hereford bulls, typical of those used over dairy herds in New Zealand. The birth weight, gestation length and pre-weaning growth of 980 calves sired by 65 sires were compared. Mean progeny birth weight (range 33.3–41.4 kg), gestation length (range 276.1–288.6 days), age at weaning (range 70.3–88.3 days) and pre-weaning ADG (range 0.63–0.76 kg/d) differed among sires (p < 0.001). There was a negative genetic correlation (−0.31) and positive phenotypic correlation (0.36) between gestation length and birth weight. Age at weaning was negatively correlated with birth weight (genetic: −0.56, phenotypic: −0.57). Bulls used in this study, and other bulls with similar genetic merit for birth weight and gestation length would be suitable for mating mixed-aged dairy cows in New Zealand.
  • Item
    Reduction in morbidity and mortality of dairy calves from an injectable trace mineral supplement
    (BMJ Group on behalf of the British Veterinary Association, 2019-06-01) Bates A; Wells M; Laven RA; Simpson M
    The effect of a multimineral preparation on the health and growth of spring born, dairy calves was investigated on four New Zealand pastoral farms. Calves were randomly allocated injections within 24 hours of birth, 35 days and 70 days after birth. Injections contained 40 mg zinc, 10 mg manganese, 5 mg selenium, 15 mg copper and 5 mg chromium per ml (Multimin+Se+ Cu+Cr Cattle, Virbac South Africa) at 1 ml/50 kg body weight. Morbidity, mortality from natural challenge and growth rates were recorded for 140 days. There were no differences in morbidity and mortality within 48 hours of birth for treated calves compared with controls, P=0.192. Morbidity and mortality were highest at 3-35 days (7.5 per cent [95 per cent CI 5.00 to 9.99] treated calves sick and 15.6 per cent [95 per cent CI 12.48 to 18.73] controls sick, P<0.001). For this period, mortality was lower at 4.4 per cent (95 per cent CI 2.49 to 6.41) treated calves and 10.4 per cent (95 per cent CI 7.78 to 13.03) controls, P<0.001. Allowing for potential confounders, the adjusted OR of treated calves scouring between 3 and 35 days was 0.44 (95 per cent CI 0.24 to 0.82, P=0.009). Allowing for potential confounders, from 0 to 140 days a second model predicted treatment approximately halved the probability of morbidity and mortality (P<0.001). There was no difference in the daily rate of gain (0.67 kg/day [95 per cent CI 0.66 to 0.67] for treated calves).