Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Early evolution of beetles regulated by the end-Permian deforestation.
    (eLife Sciences Publications Ltd, 2021-11-08) Zhao X; Yu Y; Clapham ME; Yan E; Chen J; Jarzembowski EA; Zhao X; Wang B; Perry GH
    The end-Permian mass extinction (EPME) led to a severe terrestrial ecosystem collapse. However, the ecological response of insects-the most diverse group of organisms on Earth-to the EPME remains poorly understood. Here, we analyse beetle evolutionary history based on taxonomic diversity, morphological disparity, phylogeny, and ecological shifts from the Early Permian to Middle Triassic, using a comprehensive new dataset. Permian beetles were dominated by xylophagous stem groups with high diversity and disparity, which probably played an underappreciated role in the Permian carbon cycle. Our suite of analyses shows that Permian xylophagous beetles suffered a severe extinction during the EPME largely due to the collapse of forest ecosystems, resulting in an Early Triassic gap of xylophagous beetles. New xylophagous beetles appeared widely in the early Middle Triassic, which is consistent with the restoration of forest ecosystems. Our results highlight the ecological significance of insects in deep-time terrestrial ecosystems.
  • Item
    Seasonal variation in soil and herbage CO2 efflux for a sheep-grazed alpine meadow on the north-east Qinghai-Tibetan Plateau and estimated net annual CO2 exchange
    (2/06/2022) Yuan H; Matthew C; He XZ; Sun Y; Liu Y; Zhang T; Gao X; Yan C; Chang S; Hou F
    The Qinghai-Tibetan Plateau is a vast geographic area currently subject to climate warming. Improved knowledge of the CO2 respiration dynamics of the Plateau alpine meadows and of the impact of grazing on CO2 fluxes is highly desirable. Such information will assist land use planning. We measured soil and vegetation CO2 efflux of alpine meadows using a closed chamber technique over diurnal cycles in winter, spring and summer. The annual, combined soil and plant respiration on ungrazed plots was 28.0 t CO2 ha-1 a-1, of which 3.7 t ha-1 a-1occurred in winter, when plant respiration was undetectable. This suggests winter respiration was driven mainly by microbial oxidation of soil organic matter. The winter respiration observed in this study was sufficient to offset the growing season CO2 sink reported for similar alpine meadows in other studies. Grazing increased herbage respiration in summer, presumably through stimulation of gross photosynthesis. From limited herbage production data, we estimate the sustainable yield of these meadows for grazing purposes to be about 500 kg herbage dry matter ha-1 a-1. Addition of photosynthesis data and understanding of factors affecting soil carbon sequestration to more precisely determine the CO2 balance of these grasslands is recommended.