Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Top-management compensation and environmental innovation strategy
    (ERP Environment and John Wiley and Sons Ltd, 2023-05-18) Phung G; Trinh HH; Nguyen TH; Trinh VQ
    The increasing awareness of global climate change puts more pressure on firms to reduce their environmental externalities. Managers long ignored this responsibility, which may erode business profits, going against their traditional goals. In this study, we examine the effect of top management's extrinsic incentives (i.e., reward-driven motivation) on corporate environmental innovation strategy (i.e., eco-innovation) using a large dataset of S&P1500 non-financial firms for 2000–2020. The results indicate that firms with greater levels of top-management compensation exhibit higher scores of eco-innovation engagement. The effect holds after we address the endogeneity problem through the quasi-natural experiment using the difference-in-differences analysis on the event of the Paris Agreement 2015. Our further investigations reveal that such a positive impact of managerial incentives on eco-innovation is less intensified in the more polluting industries but more pronounced in more innovative ones.
  • Item
    The impact of environmental policy on renewable energy innovation: A systematic literature review and research directions
    (ERP Environment and John Wiley and Sons Ltd, 2024-01-03) Rastegar H; Eweje G; Sajjad A
    Renewable energy innovations are imperative to tackle the climate change crisis. However, there is a gap in the literature regarding the effectiveness of environmental policies in promoting renewable energy innovations. To bridge this gap, we have adopted a systematic literature review process covering the period from 2005 to 2023. We identified and analysed 29 articles in our final sample. Further, we employ two levels of analysis (individual-policy and policy-mix levels) for analysing the extant research. Our findings show that fiscal incentives and emissions trading policies such as the European Union (EU) Emissions Trading System (ETS) consistently promote renewable energy innovations. In contrast, the effectiveness of feed-in tariffs and quotas in supporting renewable energy innovations varies, reflecting diverse impacts across distinct regions and renewable energy technologies. Our analysis also suggests that combinations of various policy types can enhance innovation more effectively than individual policies. We contribute to the extant literature by developing a classificatory analysis of the effect of environmental policies on renewable energy innovations. Our review also provides research directions for future scholarship.
  • Item
    Global genetic diversity status and trends: towards a suite of Essential Biodiversity Variables (EBVs) for genetic composition.
    (2022-08) Hoban S; Archer FI; Bertola LD; Bragg JG; Breed MF; Bruford MW; Coleman MA; Ekblom R; Funk WC; Grueber CE; Hand BK; Jaffé R; Jensen E; Johnson JS; Kershaw F; Liggins L; MacDonald AJ; Mergeay J; Miller JM; Muller-Karger F; O'Brien D; Paz-Vinas I; Potter KM; Razgour O; Vernesi C; Hunter ME
    Biodiversity underlies ecosystem resilience, ecosystem function, sustainable economies, and human well-being. Understanding how biodiversity sustains ecosystems under anthropogenic stressors and global environmental change will require new ways of deriving and applying biodiversity data. A major challenge is that biodiversity data and knowledge are scattered, biased, collected with numerous methods, and stored in inconsistent ways. The Group on Earth Observations Biodiversity Observation Network (GEO BON) has developed the Essential Biodiversity Variables (EBVs) as fundamental metrics to help aggregate, harmonize, and interpret biodiversity observation data from diverse sources. Mapping and analyzing EBVs can help to evaluate how aspects of biodiversity are distributed geographically and how they change over time. EBVs are also intended to serve as inputs and validation to forecast the status and trends of biodiversity, and to support policy and decision making. Here, we assess the feasibility of implementing Genetic Composition EBVs (Genetic EBVs), which are metrics of within-species genetic variation. We review and bring together numerous areas of the field of genetics and evaluate how each contributes to global and regional genetic biodiversity monitoring with respect to theory, sampling logistics, metadata, archiving, data aggregation, modeling, and technological advances. We propose four Genetic EBVs: (i) Genetic Diversity; (ii) Genetic Differentiation; (iii) Inbreeding; and (iv) Effective Population Size (Ne ). We rank Genetic EBVs according to their relevance, sensitivity to change, generalizability, scalability, feasibility and data availability. We outline the workflow for generating genetic data underlying the Genetic EBVs, and review advances and needs in archiving genetic composition data and metadata. We discuss how Genetic EBVs can be operationalized by visualizing EBVs in space and time across species and by forecasting Genetic EBVs beyond current observations using various modeling approaches. Our review then explores challenges of aggregation, standardization, and costs of operationalizing the Genetic EBVs, as well as future directions and opportunities to maximize their uptake globally in research and policy. The collection, annotation, and availability of genetic data has made major advances in the past decade, each of which contributes to the practical and standardized framework for large-scale genetic observation reporting. Rapid advances in DNA sequencing technology present new opportunities, but also challenges for operationalizing Genetic EBVs for biodiversity monitoring regionally and globally. With these advances, genetic composition monitoring is starting to be integrated into global conservation policy, which can help support the foundation of all biodiversity and species' long-term persistence in the face of environmental change. We conclude with a summary of concrete steps for researchers and policy makers for advancing operationalization of Genetic EBVs. The technical and analytical foundations of Genetic EBVs are well developed, and conservation practitioners should anticipate their increasing application as efforts emerge to scale up genetic biodiversity monitoring regionally and globally.