Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
Search Results
Item Probabilistic Volcanic Hazard Assessment for National Park Infrastructure Proximal to Taranaki Volcano (New Zealand)(Frontiers Media S.A., 2022-03-28) Mead S; Procter J; Bebbington M; Rodriguez-Gomez C; Fontijn KHazard assessment for infrastructure proximal to a volcanic vent raises issues that are often not present, or not as severe in hazard assessments for more distal infrastructure. Proximal regions are subject to a greater number of hazardous phenomena, and variability in impact intensity increases with the hazard magnitude. To probabilistically quantify volcanic hazard to infrastructure, multiple volcanic hazards and their effects on exposed elements need to be considered. Compared to single-hazard assessments, multi-hazard assessments increase the size and complexity of determining hazard occurrence and magnitude, typically introducing additional uncertainties in the quantification of risk. A location-centred approach, focusing on key locations rather than key hazards, can simplify the problem to one requiring identification of hazards with the potential to affect the location, followed by assessment of the probability of these hazards and their triggering eruptions. The location-centred approach is more compatible to multi-source hazards and allows for different hazard estimation methodologies to be applied as appropriate for the infrastructure type. We present a probabilistic quantification of volcanic hazard using this location centred approach for infrastructure within Te Papakura o Taranaki National Park, New Zealand. The impact to proposed park infrastructure from volcanic activity (originating from Mt. Taranaki) is quantified using a probability chain to provide a structured approach to integrate differing hazard estimation methods with eruption probability estimates within asset lifetimes. This location-centered approach provides quantitative estimates for volcanic hazards that significantly improve volcanic hazard estimates for infrastructure proximal to the Taranaki summit vent. Volcanic mass flows, predominantly pyroclastic surges or block and ash flows, are most likely (probability >0.8) to affect walking tracks if an eruption occurs. The probability of one or more eruption(s) in the next 50 years is estimated at 0.35–0.38. This use of probability chains and a location centered assessment demonstrates a technique that can be applied to proximal hazard assessments globally.Item Short-Term Eruption Forecasting for Crisis Decision-Support in the Auckland Volcanic Field, New Zealand(Frontiers Media S.A., 2022-05-24) Wild AJ; Bebbington MS; Lindsay JM; Wright HMAuckland, a city of 1.6 million people, is situated atop the active monogenetic Auckland Volcanic Field (AVF). Thus, short-term eruption forecasting is critical to support crisis management in a future event, especially to inform decisions such as calling evacuations. Here we present an updated BET_EF for the AVF incorporating new data and the results of an expert-opinion workshop, and test the performance of the resulting BETEF_AVF on eight hypothetical eruption scenarios with pre-eruptive sequences. We carry out a sensitivity analysis into the selection of prior distributions for key model parameters to explore the utility of using BET_EF outputs as a potential input for evacuation decision making in areas of distributed volcanism such as the AVF. BETEF_AVF performed well based on the synthetic unrest dataset for assessing the probability of eruption, with the vent outbreaks eventuating within the zone of high spatial likelihood. Our analysis found that the selection of different spatial prior model inputs affects the estimated vent location due to the weighting between prior models and monitoring inputs within the BET_EF, which as unrest escalates may not be appropriate for distributed volcanic fields. This issue is compounded when the outputs are combined with cost-benefit analysis to inform evacuation decisions, leading to areas well beyond those with observed precursory activity being included in evacuation zones. We find that several default settings used in past work for the application of BET_EF and CBA to inform evacuation decision-support are not suitable for distributed volcanism; in particular, the default 50-50 weighting between priors and monitoring inputs for assessing spatial vent location does not produce useful results. We conclude by suggesting future cost-benefit analysis applications in volcanic fields appropriately consider the spatial and temporal variability and uncertainty characteristic of such systems.
