Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
2 results
Search Results
Item A Matter of Scale: Population Genomic Structure and Connectivity of Fisheries At-Risk Common Dolphins (Delphinus delphis) From Australasia(Frontiers Media S.A., 2021-02-16) Barceló A; Sandoval-Castillo J; Stockin KA; Bilgmann K; Attard CRM; Zanardo N; Parra GJ; Hupman K; Reeves IM; Betty EL; Tezanos-Pinto G; Beheregaray LB; Möller LM; Jensen MPAn understanding of population structure and connectivity at multiple spatial scales is required to assist wildlife conservation and management. This is particularly critical for widely distributed and highly mobile marine mammals subject to fisheries by-catch. Here, we present a population genomic assessment of a near-top predator, the common dolphin (Delphinus delphis), which is incidentally caught in multiple fisheries across the Australasian region. The study was carried out using 14,799 ddRAD sequenced genome-wide markers genotyped for 478 individuals sampled at multiple spatial scales across Australasia. A complex hierarchical metapopulation structure was identified, with three highly distinct and genetically diverse regional populations at large spatial scales (>1,500 km). The populations inhabit the southern coast of Australia, the eastern coast of Australia, New Zealand, and Tasmania, with the latter also showing a considerable level of admixture to Australia's east coast. Each of these regional populations contained two to four nested local populations (i.e., subpopulations) at finer spatial scales, with most of the gene flow occurring within distances of 50 to 400 km. Estimates of contemporary migration rates between adjacent subpopulations ranged from 6 to 25%. Overall, our findings identified complex common dolphin population structure and connectivity across state and international jurisdictions, including migration and gene flow across the Tasman Sea. The results indicate that inter-jurisdictional collaboration is required to implement conservation management strategies and mitigate fisheries interactions of common dolphins across multiple spatial scales in the Australasian region.Item Lack of assortative mating might explain reduced phenotypic differentiation where two grasshopper species meet(John Wiley and Sons Ltd on behalf of European Society for Evolutionary Biology, 2022-04-12) Morgan-Richards M; Vilcot M; Trewick SAHybridization is an evolutionary process with wide-ranging potential outcomes, from providing populations with important genetic variation for adaptation to being a substantial fitness cost leading to extinction. Here, we focussed on putative hybridization between two morphologically distinct species of New Zealand grasshopper. We collected Phaulacridium marginale and Phaulacridium otagoense specimens from a region where mitochondrial introgression had been detected and where their habitat has been modified by introduced mammals eating the natural vegetation and by the colonization of many non-native plant species. In contrast to observations in the 1970s, our sampling of wild pairs of grasshoppers in copula provided no evidence of assortative mating with respect to species. Geometric morphometrics on pronotum shape of individuals from areas of sympatry detected phenotypically intermediate specimens (putative hybrids), and the distribution of phenotypes in most areas of sympatry was found to be unimodal. These results suggest that hybridization associated with anthropogenic habitat changes has led to these closely related species forming a hybrid swarm, with random mating. Without evidence of hybrid disadvantage, we suggest a novel hybrid lineage might eventually result from the merging of these two species.
