Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
5 results
Search Results
Item Nicotine exacerbates exertional heat strain in trained men: A randomized, placebo-controlled, double-blind study.(American Physiological Society, 2024-08-16) Moyen NE; Barnes MJ; Perry BG; Fujii N; Amano T; Kondo N; Mundel TTo determine whether using nicotine exacerbates exertional heat strain through an increased metabolic heat production (Hprod) or decreased skin blood flow (SkBF), 10 nicotine-naïve trained males [37 ± 12 yr; peak oxygen consumption (V̇o2peak): 66 ± 10 mL·min−1·kg−1] completed four trials at 20°C and 30°C following overnight transdermal nicotine (7 mg·24 h−1) and placebo use in a crossover, double-blind design. They cycled for 60 min (55% V̇o2peak) followed by a time trial (∼75% V̇o2peak) during which measures of gastrointestinal (Tgi) and mean weighted skin (̅Tsk) temperatures, SkBF, Hprod, and mean arterial pressure (MAP) were made. The difference in ΔTgi between nicotine and placebo trials was greater during 30°C (0.4 ± 0.5°C) than 20°C (0.1 ± 0.7°C), with ̅Tsk higher during nicotine than placebo trials (0.5 ± 0.5°C, P = 0.02). SkBF became progressively lower during nicotine than placebo trials (P = 0.01) and progressively higher during 30°C than 20°C trials (P < 0.01); MAP increased from baseline (P < 0.01) and remained elevated in all trials. The difference in Hprod between 30°C and 20°C trials was lower during nicotine than placebo (P = 0.01) and became progressively higher during 30°C than 20°C trials with exercise duration (P = 0.03). Mean power output during the time trial was lower during 30°C than 20°C trials (24 ± 25 W, P = 0.02), and although no effect of nicotine was observed (P > 0.59), two participants (20%) were unable to complete their 30°C nicotine trials as one reached the ethical limit for Tgi (40.0°C), whereas the other withdrew due to “nausea and chills” (Tgi = 39.7°C). These results demonstrate that nicotine use increases thermal strain and risk of exertional heat exhaustion by reducing SkBF. NEW & NOTEWORTHY In naïve participants, acute nicotine use exerts a hyperthermic effect that increases the risk of heat exhaustion during exertional heat strain, which is driven by a blunted skin blood flow response. This has implications for 1) populations that face exertional heat strain and demonstrate high nicotine use (e.g., athletes and military, 25%–50%) and 2) study design whereby screening and exclusion for nicotine use or standardization of prior use (e.g., overnight abstinence) is encouraged.Item Late-gestation heat stress impairs daughter and granddaughter lifetime performance(Elsevier Inc on behalf of the American Dairy Science Association, 2020-08) Laporta J; Ferreira FC; Ouellet V; Dado-Senn B; Almeida AK; De Vries A; Dahl GERecords of late-gestation heat stress studies conducted over 10 consecutive years in Florida were pooled and analyzed to test the hypothesis that maternal hyperthermia during late gestation impairs performance of the offspring across multiple generations and lactations, ultimately impeding the profitability of the US dairy sector. Dry-pregnant multiparous dams were actively cooled (CL; shade of a freestall barn, fans and water soakers, n = 196) or not (HT; shade only, n = 198) during the last 46 d of gestation, concurrent with the entire dry period. After data mining, records of 156 daughters (F1) that were born either to CL (CLF1, n = 77) or HT dams (HTF1, n = 79) and 45 granddaughters (F2) that were born either to CLF1 (CLF2, n = 24) or HTF1 (HTF2, n = 21) were used in the analysis. Life events and daily milk yield for 3 lactations of daughters and granddaughters were obtained. Milk yield, reproductive performance, and productive life data were analyzed using MIXED and GLIMMIX procedures, and lifespan was analyzed using PHREG and LIFETEST procedures of SAS (SAS Institute Inc., Cary, NC). Milk production of HTF1 was reduced in their first (2.2 kg/d), second (2.3 kg/d), and third lactations (6.5 kg/d) compared with CLF1. More HTF1 were culled before first calving, and the productive life and lifespan of HTF1 were reduced relative to CLF1 (4.9 and 11.7 mo, respectively). The granddaughters (HTF2) born to HTF1 produced less milk in their first lactation (1.3 kg/d) relative to granddaughters (CLF2) born to CLF1. More HTF2 were culled before first breeding relative to CLF2; however, productive life and lifespan were not different between HTF2 and CLF2 animals. An economic analysis was then performed based on the number of heat stress days, dry cows per state, and the aforementioned impairments on daughters' lifespans and milk production. Collectively in the United States, the economic losses for additional heifer rearing cost, reduced productive life, and reduced milk yield of the F1 offspring were estimated at $134, $90, and $371 million per year, respectively. In summary, late-gestation heat stress exerts carryover effects on at least 2 generations. Providing heat abatement to dry-pregnant dams is important to rescue milk loss of the dam and to prevent losses in their progeny.Item Cerebrovascular and cardiovascular responses to the Valsalva manoeuvre during hyperthermia.(John Wiley & Sons Ltd on behalf of Scandinavian Society of Clinical Physiology and Nuclear Medicine, 2023-06-18) Perry BG; Korad S; Mündel TBACKGROUND: During hyperthermia, the perturbations in mean arterial blood pressure (MAP) produced by the Valsalva manoeuvre (VM) are more severe. However, whether these more severe VM-induced changes in MAP are translated to the cerebral circulation during hyperthermia is unclear. METHODS: Healthy participants (n = 12, 1 female, mean ± SD: age 24 ± 3 years) completed a 30 mmHg (mouth pressure) VM for 15 s whilst supine during normothermia and mild hyperthermia. Hyperthermia was induced passively using a liquid conditioning garment with core temperature measured via ingested temperature sensor. Middle cerebral artery blood velocity (MCAv) and MAP were recorded continuously during and post-VM. Tieck's autoregulatory index was calculated from the VM responses, with pulsatility index, an index of pulse velocity (pulse time) and mean MCAv (MCAvmean ) also calculated. RESULTS: Passive heating significantly raised core temperature from baseline (37.9 ± 0.2 vs. 37.1 ± 0.1°C at rest, p < 0.01). MAP during phases I through III of the VM was lower during hyperthermia (interaction effect p < 0.01). Although an interaction effect was observed for MCAvmean (p = 0.02), post-hoc differences indicated only phase IIa was lower during hyperthermia (55 ± 12 vs. 49.3 ± 8 cm s- 1 for normothermia and hyperthermia, respectively, p = 0.03). Pulsatility index was increased 1-min post-VM in both conditions (0.71 ± 0.11 vs. 0.76 ± 0.11 for pre- and post-VM during normothermia, respectively, p = 0.02, and 0.86 ± 0.11 vs. 0.99 ± 0.09 for hyperthermia p < 0.01), although for pulse time only main effects of time (p < 0.01), and condition (p < 0.01) were apparent. CONCLUSION: These data indicate that the cerebrovascular response to the VM is largely unchanged by mild hyperthermia.Item Possible Consequences of Climate Change on Survival, Productivity and Reproductive Performance, and Welfare of Himalayan Yak (Bos grunniens)(MDPI (Basel, Switzerland), 2022-08-22) Sapkota S; Acharya KP; Laven R; Acharya N; Turzillo AMYak are adapted to the extreme cold, low oxygen, and high solar radiation of the Himalaya. Traditionally, they are kept at high altitude pastures during summer, moving lower in the winter. This system is highly susceptible to climate change, which has increased ambient temperatures, altered rainfall patterns and increased the occurrence of natural disasters. Changes in temperature and precipitation reduced the yield and productivity of alpine pastures, principally because the native plant species are being replaced by less useful shrubs and weeds. The impact of climate change on yak is likely to be mediated through heat stress, increased contact with other species, especially domestic cattle, and alterations in feed availability. Yak have a very low temperature humidity index (52 vs. 72 for cattle) and a narrow thermoneutral range (5-13 °C), so climate change has potentially exposed yak to heat stress in summer and winter. Heat stress is likely to affect both reproductive performance and milk production, but we lack the data to quantify such effects. Increased contact with other species, especially domestic cattle, is likely to increase disease risk. This is likely to be exacerbated by other climate-change-associated factors, such as increases in vector-borne disease, because of increases in vector ranges, and overcrowding associated with reduced pasture availability. However, lack of baseline yak disease data means it is difficult to quantify these changes in disease risk and the few papers claiming to have identified such increases do not provide robust evidence of increased diseases. The reduction in feed availability in traditional pastures may be thought to be the most obvious impact of climate change on yak; however, it is clear that such a reduction is not solely due to climate change, with socio-economic factors likely being more important. This review has highlighted the large potential negative impact of climate change on yak, and the lack of data quantifying that impact. More research on the impact of climate change in yak is needed. Attention also needs to be paid to developing mitigating strategies, which may include changes in the traditional system such as providing shelter and supplementary feed and, in marginal areas, increased use of yak-cattle hybrids.Item Measurement error of self-paced exercise performance in athletic women is not affected by ovulatory status or ambient environment(American Physiological Society, 2021-11) Zheng H; Badenhorst CE; Lei T-H; Muhamed AMC; Liao Y-H; Amano T; Fujii N; Nishiyasu T; Kondo N; Mündel TMeasurement error(s) of exercise tests for women are severely lacking in the literature. The purpose of this investigation was to 1) determine whether ovulatory status or ambient environment were moderating variables when completing a 30-min self-paced work trial and 2) provide test-retest norms specific to athletic women. A retrospective analysis of three heat stress studies was completed using 33 female participants (31 ± 9 yr, 54 ± 10 mL·min−1·kg−1) that yielded 130 separate trials. Participants were classified as ovulatory (n = 19), anovulatory (n = 4), and oral contraceptive pill users (n = 10). Participants completed trials ∼2 wk apart in their (quasi-) early follicular and midluteal phases in two of moderate (1.3 ± 0.1 kPa, 20.5 ± 0.5°C, 18 trials), warm-dry (2.2 ± 0.2 kPa, 34.1 ± 0.2°C, 46 trials), or warm-humid (3.4 ± 0.1 kPa, 30.2 ± 1.1°C, 66 trials) environments. We quantified reliability using limits of agreement, intraclass correlation coefficient (ICC), standard error of measurement (SEM), and coefficient of variation (CV). Test-retest reliability was high, clinically valid (ICC = 0.90, P < 0.01), and acceptable with a mean CV of 4.7%, SEM of 3.8 kJ (2.1 W), and reliable bias of −2.1 kJ (−1.2 W). The various ovulatory status and contrasting ambient conditions had no appreciable effect on reliability. These results indicate that athletic women can perform 30-min self-paced work trials ∼2 wk apart with an acceptable and low variability irrespective of their hormonal status or heat-stressful environments. NEW & NOTEWORTHY This study highlights that aerobically trained women perform 30-min self-paced work trials ∼2 wk apart with acceptably low variability and their hormonal/ovulatory status and the introduction of greater ambient heat and humidity do not moderate this measurement error.
