Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Predicting ewe body condition score using adjusted liveweight for conceptus and fleece weight, height at withers, and previous body condition score record
    (Oxford University Press, 2021-07) Semakula J; Corner-Thomas RA; Morris ST; Blair HT; Kenyon PR
    The relationship between ewe body condition score (BCS) and liveweight (LW) has been exploited previously to predict the former from LW, LW-change, and previous BCS records. It was hypothesized that if fleece weight and conceptus-free liveweight and LW-change, and in addition, height at withers were used, the accuracy of current approaches to predicting BCS would be enhanced. Ewes born in 2017 (n = 429) were followed from 8 mo to approximately 42 mo of age in New Zealand. Individual ewe data were collected on LW and BCS at different stages of the annual production cycle (i.e., prebreeding, at pregnancy diagnosis, prelambing, and weaning). Additionally, individual lambing dates, ewe fleece weight, and height at withers data were collected. Linear regression models were fitted to predict current BCS at each ewe age and stage of the annual production cycle using two LW-based models, namely, unadjusted for conceptus weight and fleece weight (LW alone1) and adjusted (LW alone2) models. Furthermore, another two models based on a combination of LW, LW-change, previous BCS, and height at withers (combined models), namely, unadjusted (combined1) and adjusted for conceptus and fleece weight (combined2), were fitted. Combined models gave more accurate (with lower root mean square error: RMSE) BCS predictions than models based on LW records alone. However, applying adjusted models did not improve BCS prediction accuracy (or reduce RMSE) or improve model goodness of fit (R2) (P > 0.05). Furthermore, in all models, both LW-alone and combined models a great proportion of variability in BCS, could not be accounted for (0.25 ≥ R2 ≥ 0.83) and there was substantial prediction error (0.33 BCS ≥ RMSE ≥ 0.49 BCS) across age groups and stages of the annual production cycle and over time (years). Therefore, using additional ewe data which allowed for the correction of LW for fleece and conceptus weight and using height at withers as an additional predictor did not improve model accuracy. In fact, the findings suggest that adjusting LW data for conceptus and fleece weight offer no additional value to the BCS prediction models based on LW. Therefore, additional research to identify alternative methodologies to account for individual animal variability is still needed.
  • Item
    Estimated Breeding Values of Beef Sires Can Predict Performance of Beef-Cross-Dairy Progeny
    (Frontiers Media S.A., 2021-09-30) Martín N; Coleman L; Lopez-Villalobos N; Schreurs N; Morris S; Blair H; McDade J; Back P; Hickson R
    On average, half of the animal’s estimated breeding value (EBV) is passed on to their progeny. However, it is not known how the performance of beef-cross-dairy cattle relates to the EBV of their beef sire. Such information is required to determine the genetic potential of beef sires selected based on existing EBV to be used on dairy cows in New Zealand. This study evaluated the relationship between the EBV of 30 Angus and 34 Hereford sires and the performance of their progeny for birth, growth, and carcass traits, via progeny testing of 975 beef-cross-dairy offspring born to dairy cows and grown on hill country pasture. Overall, BREEDPLAN EBV did predict progeny performance of the beef-cross-dairy cattle from this study. Gestation length and birthweight increased with increasing sire EBV (mean 0.37–0.62days and 0.52–0.64kg, respectively, p<0.05). Age at weaning decreased with increasing sire EBV for liveweight at 200days (0.17–0.21days per extra kilo of sire EBV, p<0.05) but sire EBV for liveweight at 200days had no effect on the liveweight of the progeny at 200days for either breed (p>0.05). Liveweight increased with sire EBV for liveweight at 400, 600, and 800days, by a similar amount for both breeds (between 0.23 and 0.42kg increase in progeny liveweight per extra kilo of sire EBV, p<0.05). The relationships were more inconsistent for carcass traits. For Hereford, carcass weight and eye muscle area increased with increasing sire EBV (0.27kg and 0.70cm2, respectively, p<0.05). For Angus, marble score increased by 0.10 with 1% extra in sire EBV for intramuscular fat (p<0.05). Rib fat depth tended to increase with sire EBV for both breeds (p<0.1). EBV derived from beef-breed data work in dairy-beef systems but maybe slightly less than the expected 0.5units of performance per unit of EBV. New Zealand farmers should consider BREEDPLAN EBV when selecting sires to mate dairy cows or when buying beef-cross-dairy calves for beef production, to ensure the resulting calves are born safely and on time and then grow well to produce carcasses of suitable meat and fat composition.
  • Item
    The effect of herbage availability and season of year on the rate of liveweight loss during weighing of fasting ewe lambs
    (1/02/2021) Semakula J; Corner-Thomas RA; Morris ST; Blair HT; Kenyon PR
    Sheep (Ovis aries) liveweight and liveweight change can contain errors when collection procedures are not standardized, or when there are varying time delays between removal from grazing and weighing. A two-stage study was conducted to determine the effect of herbage availability and season of year on the rate of liveweight loss during fasting and to develop and validate correction equations applied to sets of delayed liveweights collected under commercial conditions. Results showed that ewe lambs offered the Low herbage availability lost up to 1.7 kg and those offered the Medium or High herbage availability lost 2.4 kg during 8 h of delayed weighing without access to feed or drinking water. The rate of liveweight loss varied by season, herbage availability and farm (p < 0.05). Applying correction equations on matching liveweight data collected under similar conditions, provided more accurate estimates (33-55%) of without delay liveweight than using the delayed liveweight. In conclusion, a short-term delay prior to weighing commonly associated with practical handling operations significantly reduced the liveweight recorded for individual sheep. Using delayed liveweights on commercial farms and in research can have significant consequences for management practices and research results globally, therefore, liveweight data should be collected without delay. However, when this is not feasible delayed liveweights should be corrected, and in the absence of locally formulated correction equations, the ones presented in this paper could be used.
  • Item
    The effect of herbage availability, pregnancy stage and rank on the rate of liveweight loss during fasting in ewes
    (1/06/2021) Semakula J; Corner-Thomas RA; Morris ST; Blair HT; Kenyon PR
    Sheep liveweight and liveweight change are vital tools both for commercial and research farm management. However, they can be unreliable when collection procedures are not standardized or when there are varying time delays between sheep removal from grazing and weighing. This study had two stages with different objectives: (1) A liveweight loss study to determine the effect of herbage availability (Low and High) on the rate of liveweight loss of ewes at different pregnancy stages (approximately 100 days of pregnancy: P100 and 130 days: P130) and ranks (single and twin); (2) A follow-up liveweight loss study to develop and validate correction equations for delayed liveweights by applying them to data sets collected under commercial conditions. Results from each stage showed that the rate of liveweight loss varied by herbage availability and stage of pregnancy (p < 0.05) but not pregnancy-rank (p > 0.05). Further, the rate of liveweight loss differed by farm (p < 0.05). Applying liveweight correction equations increased the accuracy of without delay liveweight estimates in P100 ewes by 56% and 45% for single-bearing and twin-bearing ewes, respectively, when offered the Low-level diet. In ewes offered the High-level diet, accuracies of without delay liveweight estimates were increased by 53% and 67% for single-bearing and twin-bearing ewes, respectively. Among P130 ewes, accuracy was increased by 43% and 37% for single-bearing and twin-bearing ewes, respectively, when offered the Low herbage level and by 60% and 50% for single-bearing and twin-bearing ewes, respectively, when offered the High herbage level. In conclusion, a short-term delay of up to 8 hours prior to weighing, which is commonly associated with practical handling operations, significantly reduced the liveweight recorded for individual sheep. Using delayed liveweights on commercial farms and in research can have consequences for management practices and research results; thus, liveweight data should be collected without delay. However, when this is not feasible, delayed ewe liveweights should be corrected and, in the absence of locally devised correction equations, the ones generated in the current study could be applied on farms with similar management conditions and herbage type.