Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
Search Results
Item The association between rainfall and human leptospirosis in Aotearoa New Zealand(Cambridge University Press, 2025-08-26) Tana T; Wada M; Benschop J; Vallee ELeptospirosis remains a significant occupational zoonosis in New Zealand, and emerging serovar shifts warrant a closer examination of climate-related transmission pathways. This study aimed to examine whether total monthly rainfall is associated with reported leptospirosis in humans in New Zealand. Poisson and negative binomial models were developed to examine the relationship between rainfall at 0-, 1-, 2-, and 3-month lags and the incidence of leptospirosis during the month of the report. Total monthly rainfall was positively associated with the occurrence of human leptospirosis in the following month by a factor of 1.017 (95% CI: 1.007–1.026), 1.023 at the 2-month lag (95% CI:1.013–1.032), and 1.018 at the 3-month lag (95% CI: 1.009–1.028) for every additional cm of rainfall. Variation was present in the magnitude of association for each of the individual serovars considered, suggesting different exposure pathways. Assuming that the observed associations are causal, this study supports that additional human cases are likely to occur associated with increased levels of rainfall. This provides the first evidence for including rainfall in a leptospirosis early warning system and to design targeted communication and prevention measures and provide resource allocation, particularly after heavy rainfall in New Zealand.Item Land Use Change and Infectious Disease Emergence(John Wiley and Sons, Inc on behalf of the American Geophysical Union, 2025-06-01) Rulli MC; D’Odorico P; Galli N; John RS; Muylaert RL; Santini M; Hayman DTSMajor infectious diseases threatening human health are transmitted to people from animals or by arthropod vectors such as insects. In recent decades, disease outbreaks have become more common, especially in tropical regions, including new and emerging infections that were previously undetected or unknown. Even though there is growing awareness that altering natural habitats can lead to disease outbreaks, the link between land use change and emerging diseases is still often overlooked and poorly understood. Land use change typically destroys natural habitat and alters landscape composition and configuration, thus altering wildlife population dynamics, including those of pathogen hosts, domesticated (often intermediary) hosts, infectious agents, and their vectors. Moreover, land use changes provide opportunities for human exposure to direct contact with wildlife, livestock, and disease-carrying vectors, thereby increasing pathogen spillover from animals to humans. Here we explore the nexus between human health and land use change, highlighting multiple pathways linking emerging disease outbreaks and deforestation, forest fragmentation, urbanization, agricultural expansion, intensified farming systems, and concentrated livestock production. We connect direct and underlying drivers of land use change to human health outcomes related to infectious disease emergence. Despite growing evidence of land-use induced spillover, strategies to reduce the risks of emerging diseases are often absent from discussions on sustainable food systems and land management. A “One Health” perspective—integrating human, animal, and environmental health—provides a critical yet often-overlooked dimension for understanding the health impacts of land use change.
