Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
Search Results
Item Using Remote and Proximal Sensing Data and Vine Vigor Parameters for Non-Destructive and Rapid Prediction of Grape Quality(MDPI (Basel, Switzerland), 2023-11-19) Lyu H; Grafton M; Ramilan T; Irwin M; Wei H-E; Sandoval E; Zhang C; Liu DThe traditional method for determining wine grape total soluble solid (TSS) is destructive laboratory analysis, which is time consuming and expensive. In this study, we explore the potential of using different predictor variables from various advanced techniques to predict the grape TSS in a non-destructive and rapid way. Calculating Pearson’s correlation coefficient between the vegetation indices (VIs) obtained from UAV multispectral imagery and grape TSS resulted in a strong correlation between OSAVI and grape TSS with a coefficient of 0.64. Additionally, seven machine learning models including ridge regression and lasso regression, k-Nearest neighbor (KNN), support vector regression (SVR), random forest regression (RFR), extreme gradient boosting (XGBoost), and artificial neural network (ANN) are used to build the prediction models. The predictor variables include the unmanned aerial vehicles (UAV) derived VIs, and other ancillary variables including normalized difference vegetation index (NDVI_proximal) and soil electrical conductivity (ECa) measured by proximal sensors, elevation, slope, trunk circumference, and day of the year for each sampling date. When using 23 VIs and other ancillary variables as input variables, the results show that ensemble learning models (RFR, and XGBoost) outperform other regression models when predicting grape TSS, with the average of root mean square error (RMSE) of 1.19 and 1.2 °Brix, and coefficient of determination (R2) of 0.52 and 0.52, respectively, during the 20 times testing process. In addition, this study examines the prediction performance of using optimized soil adjusted vegetation index (OSAVI) or normalized green-blue difference index (NGBDI) as the main input for different machine learning models with other ancillary variables. When using OSAVI-based models, the best prediction model is RFR with an average R2 of 0.51 and RMSE of 1.19 °Brix, respectively. For NGBDI-based model, the RFR model showed the best average result of predicting TSS were a R2 of 0.54 and a RMSE of 1.16 °Brix, respectively. The approach proposed in this study provides an opportunity to grape growers to estimate the whole vineyard grape TSS in a non-destructive way.Item Using Remote and Proximal Sensing Data and Vine Vigor Parameters for Non-Destructive and Rapid Prediction of Grape Quality(MDPI AG, 2023-11-19) Lyu H; Grafton M; Ramilan T; Irwin M; Wei H-E; Sandoval E; Zhang C; Liu DThe traditional method for determining wine grape total soluble solid (TSS) is destructive laboratory analysis, which is time consuming and expensive. In this study, we explore the potential of using different predictor variables from various advanced techniques to predict the grape TSS in a non-destructive and rapid way. Calculating Pearson’s correlation coefficient between the vegetation indices (VIs) obtained from UAV multispectral imagery and grape TSS resulted in a strong correlation between OSAVI and grape TSS with a coefficient of 0.64. Additionally, seven machine learning models including ridge regression and lasso regression, k-Nearest neighbor (KNN), support vector regression (SVR), random forest regression (RFR), extreme gradient boosting (XGBoost), and artificial neural network (ANN) are used to build the prediction models. The predictor variables include the unmanned aerial vehicles (UAV) derived VIs, and other ancillary variables including normalized difference vegetation index (NDVI_proximal) and soil electrical conductivity (ECa) measured by proximal sensors, elevation, slope, trunk circumference, and day of the year for each sampling date. When using 23 VIs and other ancillary variables as input variables, the results show that ensemble learning models (RFR, and XGBoost) outperform other regression models when predicting grape TSS, with the average of root mean square error (RMSE) of 1.19 and 1.2 ◦Brix, and coefficient of determination (R2 ) of 0.52 and 0.52, respectively, during the 20 times testing process. In addition, this study examines the prediction performance of using optimized soil adjusted vegetation index (OSAVI) or normalized green-blue difference index (NGBDI) as the main input for different machine learning models with other ancillary variables. When using OSAVI-based models, the best prediction model is RFR with an average R2 of 0.51 and RMSE of 1.19 ◦Brix, respectively. For NGBDI-based model, the RFR model showed the best average result of predicting TSS were a R2 of 0.54 and a RMSE of 1.16 ◦Brix, respectively. The approach proposed in this study provides an opportunity to grape growers to estimate the whole vineyard grape TSS in a non-destructive way.Item Sensors and Instruments for Brix Measurement: A Review(MDPI AG, 16/03/2022) Jaywant SA; Singh H; Arif KMQuality assessment of fruits, vegetables, or beverages involves classifying the products according to the quality traits such as, appearance, texture, flavor, sugar content. The measurement of sugar content, or Brix, as it is commonly known, is an essential part of the quality analysis of the agricultural products and alcoholic beverages. The Brix monitoring of fruit and vegetables by destructive methods includes sensory assessment involving sensory panels, instruments such as refractometer, hydrometer, and liquid chromatography. However, these techniques are manual, time-consuming, and most importantly, the fruits or vegetables are damaged during testing. On the other hand, the traditional sample-based methods involve manual sample collection of the liquid from the tank in fruit/vegetable juice making and in wineries or breweries. Labour ineffectiveness can be a significant drawback of such methods. This review presents recent developments in different destructive and nondestructive Brix measurement techniques focused on fruits, vegetables, and beverages. It is concluded that while there exist a variety of methods and instruments for Brix measurement, traits such as promptness and low cost of analysis, minimal sample preparation, and environmental friendliness are still among the prime requirements of the industry.
