Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 10 of 51
  • Item
    Artificial Intelligence-Enabled DDoS Detection for Blockchain-Based Smart Transport Systems.
    (MDPI (Basel, Switzerland), 2021-12-22) Liu T; Sabrina F; Jang-Jaccard J; Xu W; Wei Y
    A smart public transport system is expected to be an integral part of our human lives to improve our mobility and reduce the effect of our carbon footprint. The safety and ongoing maintenance of the smart public transport system from cyberattacks are vitally important. To provide more comprehensive protection against potential cyberattacks, we propose a novel approach that combines blockchain technology and a deep learning method that can better protect the smart public transport system. By the creation of signed and verified blockchain blocks and chaining of hashed blocks, the blockchain in our proposal can withstand unauthorized integrity attack that tries to forge sensitive transport maintenance data and transactions associated with it. A hybrid deep learning-based method, which combines autoencoder (AE) and multi-layer perceptron (MLP), in our proposal can effectively detect distributed denial of service (DDoS) attempts that can halt or block the urgent and critical exchange of transport maintenance data across the stakeholders. The experimental results of the hybrid deep learning evaluated on three different datasets (i.e., CICDDoS2019, CIC-IDS2017, and BoT-IoT) show that our deep learning model is effective to detect a wide range of DDoS attacks achieving more than 95% F1-score across all three datasets in average. The comparison of our approach with other similar methods confirms that our approach covers a more comprehensive range of security properties for the smart public transport system.
  • Item
    ‘Not One More Bloody Acre’: Land Restitution and the Treaty of Waitangi Settlement Process in Aotearoa New Zealand
    (MDPI (Basel, Switzerland), 2019-10-31) Wynyard M
    Te Tiriti o Waitangi, signed between Māori rangatira (chiefs) and the British Crown in 1840 guaranteed to Māori the ‘full, exclusive and undisturbed possession of their lands’. In the decades that followed, Māori were systematically dispossessed of all but a fraction of their land through a variety of mechanisms, including raupatu (confiscation), the individualisation of title, excessive Crown purchasing and the compulsory acquisition of land for public works. Māori, who have deep cultural and whakapapa (genealogical) connections to the land, were left culturally, materially and spiritually impoverished. Land loss has long been a central grievance for many Māori and the return of land has been a guiding motivation for whānau (extended family), hapū (sub-tribe) and iwi (tribe) seeking redress from the Crown. Since the 1990s, many groups have entered into negotiations to settle their historical grievances with the Crown and while land loss and the deep yearning for its return are central to many Māori claims, precious little land is typically returned to Māori through the settlement process. This paper seeks to critically examine the Treaty settlement process in light of land restitution policies enacted elsewhere and argues that one of the many flaws in the process is the paucity of land returned to Māori.
  • Item
    First confirmed records of white-coat pups of the Endangered Caspian seal Pusa caspica on the coast of Iran
    (Cambridge University Press, 2023-04-26) Shirazi ASEA; Chilvers B
  • Item
    Effects of biochar in combination with varied N inputs on grain yield, N uptake, NH3 volatilization, and N2O emission in paddy soil
    (Frontiers Media, 12/05/2023) Yi Z; Jeyakumar P; Yin C; Sun H
    Biochar application can improve crop yield, reduce ammonia (NH3) volatilization and nitrous oxide (N2O) emission from farmland. We here conducted a pot experiment to compare the effects of biochar application on rice yield, nitrogen (N) uptake, NH3 and N2O losses in paddy soil with low, medium, and high N inputs at 160 kg/ha, 200 kg/ha and 240 kg/ha, respectively. The results showed that: (1) Biochar significantly increased the rice grain yield at medium (200 kg/ha) and high (240 kg/ha) N inputs by 56.4 and 70.5%, respectively. The way to increase yield was to increase the rice N uptake, rice panicle number per pot and 1,000 grain weight by 78.5–96.5%, 6–16% and 4.4–6.1%, respectively; (2) Under low (160 kg/ha) N input, adding biochar effectively reduced the NH3 volatilization by 31.6% in rice season. The decreases of pH value and NH4+-N content in surface water, and the increases of the abundance of NH4+-N oxidizing archaea and bacteria (AOA and AOB) communities contributed to the reduction of NH3 volatilization following the biochar application; (3) Under same N input levels, the total N2O emission in rice season decreased by 43.3–73.9% after biochar addition. The decreases of nirK and nirS gene abundances but the increases of nosZ gene abundance are the main mechanisms for biochar application to reduce N2O emissions. Based on the results of the current study, adding biochar at medium (200 kg/ha) N level (N200 + BC) is the best treatment to synchronically reduce NH3 and N2O losses, improve grain yield, and reduce fertilizer application in rice production system.
  • Item
    Static Hand Gesture Recognition Using Capacitive Sensing and Machine Learning
    (MDPI AG, 24/03/2023) Noble F; Xu M; Alam F
    Automated hand gesture recognition is a key enabler of Human-to-Machine Interfaces (HMIs) and smart living. This paper reports the development and testing of a static hand gesture recognition system using capacitive sensing. Our system consists of a 6×18 array of capacitive sensors that captured five gestures-Palm, Fist, Middle, OK, and Index-of five participants to create a dataset of gesture images. The dataset was used to train Decision Tree, Naïve Bayes, Multi-Layer Perceptron (MLP) neural network, and Convolutional Neural Network (CNN) classifiers. Each classifier was trained five times; each time, the classifier was trained using four different participants' gestures and tested with one different participant's gestures. The MLP classifier performed the best, achieving an average accuracy of 96.87% and an average F1 score of 92.16%. This demonstrates that the proposed system can accurately recognize hand gestures and that capacitive sensing is a viable method for implementing a non-contact, static hand gesture recognition system.
  • Item
    Sensors and Instruments for Brix Measurement: A Review
    (MDPI AG, 16/03/2022) Jaywant SA; Singh H; Arif KM
    Quality assessment of fruits, vegetables, or beverages involves classifying the products according to the quality traits such as, appearance, texture, flavor, sugar content. The measurement of sugar content, or Brix, as it is commonly known, is an essential part of the quality analysis of the agricultural products and alcoholic beverages. The Brix monitoring of fruit and vegetables by destructive methods includes sensory assessment involving sensory panels, instruments such as refractometer, hydrometer, and liquid chromatography. However, these techniques are manual, time-consuming, and most importantly, the fruits or vegetables are damaged during testing. On the other hand, the traditional sample-based methods involve manual sample collection of the liquid from the tank in fruit/vegetable juice making and in wineries or breweries. Labour ineffectiveness can be a significant drawback of such methods. This review presents recent developments in different destructive and nondestructive Brix measurement techniques focused on fruits, vegetables, and beverages. It is concluded that while there exist a variety of methods and instruments for Brix measurement, traits such as promptness and low cost of analysis, minimal sample preparation, and environmental friendliness are still among the prime requirements of the industry.
  • Item
    Multi-Layer Blockchain-Based Security Architecture for Internet of Things
    (MDPI (Basel, Switzerland), 2021-02) Pajooh HH; Rashid M; Alam F; Demidenko S
    The proliferation of smart devices in the Internet of Things (IoT) networks creates significant security challenges for the communications between such devices. Blockchain is a decentralized and distributed technology that can potentially tackle the security problems within the 5G-enabled IoT networks. This paper proposes a Multi layer Blockchain Security model to protect IoT networks while simplifying the implementation. The concept of clustering is utilized in order to facilitate the multi-layer architecture. The K-unknown clusters are defined within the IoT network by applying techniques that utillize a hybrid Evolutionary Computation Algorithm while using Simulated Annealing and Genetic Algorithms. The chosen cluster heads are responsible for local authentication and authorization. Local private blockchain implementation facilitates communications between the cluster heads and relevant base stations. Such a blockchain enhances credibility assurance and security while also providing a network authentication mechanism. The open-source Hyperledger Fabric Blockchain platform is deployed for the proposed model development. Base stations adopt a global blockchain approach to communicate with each other securely. The simulation results demonstrate that the proposed clustering algorithm performs well when compared to the earlier reported approaches. The proposed lightweight blockchain model is also shown to be better suited to balance network latency and throughput as compared to a traditional global blockchain.
  • Item
    The Effect of Age of Dam and Birth Rank on the Reproductive Performance of Ewes as One- and Two-Year-Olds.
    (10/03/2021) Pettigrew E; Hickson R; Morris S; Kenyon P; Corner-Thomas R; Haslin E; Blair H
    Currently, 30-43% of New Zealand sheep farmers breed their ewe lambs, but few retain the offspring as replacements for their flock. No difference in lamb production as a yearling among singletons and twins born to ewe lambs and twins born to mature ewes has been reported, provided the ewe lambs had reached the 60-65% of their likely mature weight prior to breeding at seven to eight months of age. The aim of this experiment was to determine the lamb production from singletons and twins born to ewe lambs and twins born to mature ewes during their first two years of lambing. The experiment included 8-month-old ewes born as twins to mature ewes (M2, n = 135), singletons born to ewe lambs (L1, n = 135), and twins born to ewe lambs (L2, n = 88), bred during the same period to the same rams, over two years. The efficiency of lamb production (total litter weight at weaning divided by the pre-breeding weight of the ewe, for all ewes presented for breeding) after two years of production was not significantly different (p > 0.05) among the groups (0.40 ± 0.02, 0.39 ± 0.02, and 0.39 ± 0.03, for M2, L1, and L2, respectively).
  • Item
    Isolates, Antimicrobial Susceptibility Profiles and Multidrug Resistance of Bacteria Cultured from Pig Submissions in New Zealand
    (MDPI (Basel, Switzerland), 14/08/2020) Riley CB; Chidgey KL; Bridges JP; Gordon E; Lawrence KE
    Data on the scope of bacterial pathogens present and the frequency of antimicrobial resistance (AMR) in New Zealand's pigs are limited. This study describes bacterial isolates, antimicrobial susceptibility data, and multidrug resistance (MDR; resistance to ≥3 antimicrobial classes) from New Zealand pig submissions. Porcine test data from June 2003 to February 2016 were obtained from commercial veterinary pathology laboratory records. In total, 470/477 unique submissions resulted in bacterial growth, yielding 779 isolates. Sample type was recorded for 360/477 (75.5%); lung (79/360; 21.9%), faecal (61/360; 16.9%) and intestinal (45/360; 12.5%) were most common. The most common isolates were Escherichia coli (186/779, 23.9%), Actinobacillus pleuropneumoniae (43/779; 5.5%), Streptococcus suis (43/779; 5.5%), unidentified Campylobacter spp. (38/779; 4.9%), alpha haemolytic Streptococci (32/779; 4.1%), coagulase negative Staphylococcus spp. (26/779; 3.3%), and Pasteurella multocida (25/779; 3.2%). Susceptibility results were available for 141/779 (18.1%) isolates from 62/470 (13.2%) submissions. Most were susceptible to trimethoprim-sulphonamide (75/81; 92.6%), but fewer were susceptible to penicillin (37/77; 48.1%), tilmicosin (18/43; 41.9%), or tetracyclines (41/114; 36.0%). No susceptibility data were available for Salmonella spp., Campylobacter spp., or Yersinia spp. isolates. MDR was present in 60/141 (42.6%) isolates. More data on sample submission drivers, antimicrobial drug use, and susceptibilities of important porcine bacterial isolates are required to inform guidelines for prudent antimicrobial use, to reduce their prevalence, human transmission, and to minimise AMR and MDR.
  • Item
    Occluded Grape Cluster Detection and Vine Canopy Visualisation Using an Ultrasonic Phased Array
    (MDPI (Basel, Switzerland), 20/03/2021) Parr B; Legg M; Bradley S; Alam F
    Grape yield estimation has traditionally been performed using manual techniques. However, these tend to be labour intensive and can be inaccurate. Computer vision techniques have therefore been developed for automated grape yield estimation. However, errors occur when grapes are occluded by leaves, other bunches, etc. Synthetic aperture radar has been investigated to allow imaging through leaves to detect occluded grapes. However, such equipment can be expensive. This paper investigates the potential for using ultrasound to image through leaves and identify occluded grapes. A highly directional low frequency ultrasonic array composed of ultrasonic air-coupled transducers and microphones is used to image grapes through leaves. A fan is used to help differentiate between ultrasonic reflections from grapes and leaves. Improved resolution and detail are achieved with chirp excitation waveforms and near-field focusing of the array. The overestimation in grape volume estimation using ultrasound reduced from 222% to 112% compared to the 3D scan obtained using photogrammetry or from 56% to 2.5% compared to a convex hull of this 3D scan. This also has the added benefit of producing more accurate canopy volume estimations which are important for common precision viticulture management processes such as variable rate applications.