Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
Search Results
Item Influence of water loss on mechanical properties of stored blueberries(Elsevier, 27/02/2021) Rivera S; Kerckhoffs H; Sofkova-Bobcheva S; Hutchins D; East AMoisture loss is considered a main cause of blueberry softening during postharvest storage. However, the causal relationship between softening and water loss has only previously been described by force to 1 mm compression. This study was performed to identify suitable instrumental tests that allow the separation of blueberries with different water loss values during storage. Mechanical properties were measured by double compression (Texture Profile Analysis) and puncture test. Variability on blueberry mechanical properties was created by regulating storage humidity and consequently water loss. As water loss increases during storage, hardness slope (slope of a straight line drawn between the trigger force of 0.06 N and the force at 15 % strain) obtained by the compression test reduces, and the displacement at berry skin break obtained by puncture test, increases. Therefore, these parameters can be potentially used to quantify mechanical changes in stored blueberries.Item Potential for bioenergy generation and nutrient recycling in horticultural production systems in New Zealand(International Society for Horticultural Science, 20/08/2014) Kerckhoffs LHJ; Renquist RRenewable energy can be produced from a number of sources, including plant biomass. One of the most efficient technologies to generate bioenergy from plant biomass is on-farm anaerobic digestion (AD) producing biogas. Biogas can be used as an equal substitute to natural gas for industrial, commercial and residential use, and/or can be converted to electricity, heat or vehicle fuel using established technologies. Using purified biogas for transport is a highly effective greenhouse gas mitigation strategy. Various organic feed stocks can be converted into biogas: we have identified a large variety of purpose-grown bioenergy crop species (such as Jerusalem artichoke, forage sorghum, whole triticale) under New Zealand conditions, but feedstocks can also include farm and orchard waste streams (reject fruit, clippings, thinning and so on), groundcover biomass and other locally sourced organic municipal and industrial bio-waste as well. A novel biofuel cropping system was developed based on AD technology. It makes full use of the nutrients in the digestate with a unique closed-loop nutrient supply feature that conserves nutrients in the feedstock and recycles them back to the farm and orchard as bio-fertiliser. This eliminates the need for external fertilizer. This paper will explore the considerable potential for bioenergy generation and nutrient recycling in horticultural production systems in New Zealand.

