Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 10 of 26
  • Item
    Non-negative Matrix Factorization: A Survey
    (Oxford University Press on behalf of the British Computer Society, 2021-07-01) Gan J; Liu T; Li L; Zhang J
    Non-negative matrix factorization (NMF) is a powerful tool for data science researchers, and it has been successfully applied to data mining and machine learning community, due to its advantages such as simple form, good interpretability and less storage space. In this paper, we give a detailed survey on existing NMF methods, including a comprehensive analysis of their design principles, characteristics and drawbacks. In addition, we also discuss various variants of NMF methods and analyse properties and applications of these variants. Finally, we evaluate the performance of nine NMF methods through numerical experiments, and the results show that NMF methods perform well in clustering tasks.
  • Item
    IoT Big Data provenance scheme using blockchain on Hadoop ecosystem
    (BioMed Central Ltd, 2021-12) Honar Pajooh H; Rashid MA; Alam F; Demidenko S
    The diversity and sheer increase in the number of connected Internet of Things (IoT) devices have brought significant concerns associated with storing and protecting a large volume of IoT data. Storage volume requirements and computational costs are continuously rising in the conventional cloud-centric IoT structures. Besides, dependencies of the centralized server solution impose significant trust issues and make it vulnerable to security risks. In this paper, a layer-based distributed data storage design and implementation of a blockchain-enabled large-scale IoT system are proposed. It has been developed to mitigate the above-mentioned challenges by using the Hyperledger Fabric (HLF) platform for distributed ledger solutions. The need for a centralized server and a third-party auditor was eliminated by leveraging HLF peers performing transaction verifications and records audits in a big data system with the help of blockchain technology. The HLF blockchain facilitates storing the lightweight verification tags on the blockchain ledger. In contrast, the actual metadata are stored in the off-chain big data system to reduce the communication overheads and enhance data integrity. Additionally, a prototype has been implemented on embedded hardware showing the feasibility of deploying the proposed solution in IoT edge computing and big data ecosystems. Finally, experiments have been conducted to evaluate the performance of the proposed scheme in terms of its throughput, latency, communication, and computation costs. The obtained results have indicated the feasibility of the proposed solution to retrieve and store the provenance of large-scale IoT data within the Big Data ecosystem using the HLF blockchain. The experimental results show the throughput of about 600 transactions, 500 ms average response time, about 2–3% of the CPU consumption at the peer process and approximately 10–20% at the client node. The minimum latency remained below 1 s however, there is an increase in the maximum latency when the sending rate reached around 200 transactions per second (TPS).
  • Item
    Bayesian networks in healthcare: Distribution by medical condition
    (2020-07) McLachlan, S; Dube, K; Hitman, GA; Fenton, NE; Kyrimi, E
  • Item
    Effects of eHealth literacy on general practitioner consultations: A mediation analysis
    (JMIR Publications, 16/05/2017) Schulz PJ; Fitzpatrick MA; Hess AC; Sudbury-Riley L; Hartung U
    Objective: We propose and test two potential mediators of the negative effect of eHealth literacy on health care utilization: (1) health information seeking and (2) gain in empowerment by information seeking. Methods: Data were collected in New Zealand, the United Kingdom, and the United States using a Web-based survey administered by a company specialized on providing online panels. Combined, the three samples resulted in a total of 996 baby boomers born between 1946 and 1965 who had used the Internet to search for and share health information in the previous 6 months. Measured variables include eHealth literacy, Internet health information seeking, the self-perceived gain in empowerment by that information, and the number of consultations with one’s general practitioner (GP). Path analysis was employed for data analysis. Results: We found a bundle of indirect effect paths showing a positive relationship between health literacy and health care utilization: via health information seeking (Path 1), via gain in empowerment (Path 2), and via both (Path 3). In addition to the emergence of these indirect effects, the direct effect of health literacy on health care utilization disappeared. Conclusions: The indirect paths from health literacy via information seeking and empowerment to GP consultations can be interpreted as a dynamic process and an expression of the ability to find, process, and understand relevant information when that is necessary.
  • Item
    Synthea: An approach, method, and software mechanism for generating synthetic patients and the synthetic electronic health care record
    (Oxford University Press (OUP), 30/08/2017) Walonoski J; Kramer M; Nichols J; Quina A; Moesel; Hall D; Duffett C; Dube K; Gallagher T; McLachlan S
    Objective: Our objective is to create a source of synthetic electronic health records that is readily available; suited to industrial, innovation, research, and educational uses; and free of legal, privacy, security, and intellectual property restrictions. Materials and Methods: We developed Synthea, an open-source software package that simulates the lifespans of synthetic patients, modeling the 10 most frequent reasons for primary care encounters and the 10 chronic conditions with the highest morbidity in the United States. Results: Synthea adheres to a previously developed conceptual framework, scales via open-source deployment on the Internet, and may be extended with additional disease and treatment modules developed by its user community. One million synthetic patient records are now freely available online, encoded in standard formats (eg, Health Level-7 [HL7] Fast Healthcare Interoperability Resources [FHIR] and Consolidated-Clinical Document Architecture), and accessible through an HL7 FHIR application program interface. Discussion: Health care lags other industries in information technology, data exchange, and interoperability. The lack of freely distributable health records has long hindered innovation in health care. Approaches and tools are available to inexpensively generate synthetic health records at scale without accidental disclosure risk, lowering current barriers to entry for promising early-stage developments. By engaging a growing community of users, the synthetic data generated will become increasingly comprehensive, detailed, and realistic over time. Conclusion: Synthetic patients can be simulated with models of disease progression and corresponding standards of care to produce risk-free realistic synthetic health care records at scale.
  • Item
    Using information communication technology in models of integrated community-based primary health care: learning from the iCOACH case studies
    (BioMed Central Limited, 26/06/2018) Steele Gray C; Barnsley J; Gagnon D; Belzile L; Kenealy T; Shaw J; Sheridan N; Wankah Nji P; Wodchis WP
    BACKGROUND: Information communication technology (ICT) is a critical enabler of integrated models of community-based primary health care; however, little is known about how existing technologies have been used to support new models of integrated care. To address this gap, we draw on data from an international study of integrated models, exploring how ICT is used to support activities of integrated care and the organizational and environmental barriers and enablers to its adoption. METHODS: We take an embedded comparative multiple-case study approach using data from a study of implementation of nine models of integrated community-based primary health care, the Implementing Integrated Care for Older Adults with Complex Health Needs (iCOACH) study. Six cases from Canada, three each in Ontario and Quebec, and three in New Zealand, were studied. As part of the case studies, interviews were conducted with managers and front-line health care providers from February 2015 to March 2017. A qualitative descriptive approach was used to code data from 137 interviews and generate word tables to guide analysis. RESULTS: Despite different models and contexts, we found strikingly similar accounts of the types of activities supported through ICT systems in each of the cases. ICT systems were used most frequently to support activities like care coordination by inter-professional teams through information sharing. However, providers were limited in their ability to efficiently share patient data due to data access issues across organizational and professional boundaries and due to system functionality limitations, such as a lack of interoperability. CONCLUSIONS: Even in innovative models of care, managers and providers in our cases mainly use technology to enable traditional ways of working. Technology limitations prevent more innovative uses of technology that could support disruption necessary to improve care delivery. We argue the barriers to more innovative use of technology are linked to three factors: (1) information access barriers, (2) limited functionality of available technology, and (3) organizational and provider inertia.
  • Item
    Gender Diversity Population Simulations in an Extended Game of Life Context
    (IEEE, 20/06/2019) Mathrani A; Scogings C; Mathrani S
    Cellular automata studies have been instrumental in computational and biological studies for simulating life contours based on simple rule-based strategies. Game of Life (GoL) presented us with one of the earliest automata studies that led the way in exemplifying non-linear spatial representations, such as large-scale population evolution scenarios depicting species dominance, species equilibrium, and species extinction. However, the GoL was driven by interactions among vegetative entities comprising live and die states only. This paper extends GoL to gendered-GoL (g-GoL) in which male phenotypes and female phenotypes interact in an extended world to procreate. Using the g-GoL, we have demonstrated many evolution contours by applying gender-based dependence rules. Evolution scenarios have been simulated with skewed gender ratios that favor the birth of male offspring. Preference for a male child is common in certain cultures; therefore, empirical data realized with skewed gender settings in g-GoL can reveal the long-term impact of non-egalitarian gender societal structures. Our model provides a tool for the study of emergent life contours and brings awareness on current gender imbalances to strengthen multi-disciplinary research inquiry in the areas of social practices, mathematical modeling, and use of computational technologies.
  • Item
    CapLoc: Capacitive Sensing Floor for Device-Free Localization and Fall Detection
    (IEEE Xplore, 12/10/2020) Faulkner N; Parr B; Alam F; Legg M; Demidenko S
    Passive indoor positioning, also known as Device-Free Localization (DFL), has applications such as occupancy sensing, human-computer interaction, fall detection, and many other location-based services in smart buildings. Vision-, infrared-, wireless-based DFL solutions have been widely explored in recent years. They are characterized by respective strengths and weaknesses in terms of the desired accuracy, feasibility in various real-world scenarios, etc. Passive positioning by tracking the footsteps on the floor has been put forward as one of the promising options. This article introduces CapLoc, a floor-based DFL solution that can localize a subject in real-time using capacitive sensing. Experimental results with three individuals walking 39 paths on the CapLoc show that it can detect and localize a single target's footsteps accurately with a median localization error of 0.026 m. The potential for fall detection is also shown with the outlines of various poses of the subject lying upon the floor.
  • Item
    A Machine Learning Approach to Enhance the Performance of D2D-Enabled Clustered Networks
    (IEEE, 20/01/2021) Aslam S; Alam F; Hasan SF; Rashid MA
    Clustering has been suggested as an effective technique to enhance the performance of multicasting networks. Typically, a cluster head is selected to broadcast the cached content to its cluster members utilizing Device-to-Device (D2D) communication. However, some users can attain better performance by being connected with the Evolved Node B (eNB) rather than being in the clusters. In this article, we apply machine learning algorithms, namely Support Vector Machine, Random Forest, and Deep Neural Network to identify the users that should be serviced by the eNB. We therefore propose a mixed-mode content distribution scheme where the cluster heads and eNB service the two segregated groups of users to improve the performance of existing clustering schemes. A D2D-enabled multicasting scenario has been set up to perform a comprehensive simulation study that demonstrates that by utilizing the mixed-mode scheme, the performance of individual users, as well as the whole network, improve significantly in terms of throughput, energy consumption, and fairness. This study also demonstrates the trade-off between eNB loading and performance improvement for various parameters.
  • Item
    Device-Free Localization Using Privacy-Preserving Infrared Signatures Acquired from Thermopiles and Machine Learning
    (IEEE, 4/06/2021) Faulkner N; Alam F; Legg M; Demidenko S
    The development of an accurate passive localization system utilizing thermopile sensing and artificial intelligence is discussed in this paper. Several machine learning techniques are explored to create robust angular and radius coordinate models for a localization target with respect to thermopile sensors. These models are leveraged to develop a reconfigurable passive localization system that can use a varying number of thermopiles without the need for retraining. The proposed robust system achieves high localization accuracy (with the median error between 0.13 m and 0.2 m) while being trained using a single human subject and tested against multiple other subjects. It is shown that the proposed system does not experience any significant performance deterioration when localizing a subject at different ambient temperatures or with different configurations of the thermopile sensors placement.