Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
2 results
Search Results
Item The kinetics of amino acid disappearance in the small intestine is related to the extent of amino acids absorbed in growing pigs(Cambridge University Press on behalf of The Nutrition Society, 2024-03-14) Montoya CA; van Bemmel M; Kreutz K; Hodgkinson SM; Stroebinger N; Moughan PJThis study evaluated the importance of a correction for amino acids (AA) released into the hindgut on a measure of AA absorption kinetics and tested whether AA absorption kinetics are related to the extent of AA absorption using the growing pig as a model for humans. Thirty-six nine-week-old pigs (22·3 kg) received a diet containing whey protein as the sole protein source for 8 d. Pigs received their last meal containing the indigestible marker titanium dioxide before being euthanised at 1, 2, 3, 4, 6 and 12 h post-feeding. The entire content of each gastrointestinal tract (GIT) region was collected to determine AA released into the hindgut, and the kinetics and extent of AA absorption (uncorrected and corrected for AA entering the hindgut). Amounts of AA released into the hindgut increased over time (e.g. 33 and 180 mg of Glu for 4 and 6 h post-feeding). The corrected apparent amount of each AA absorbed from the GIT lumen after 4 h post-feeding was generally lower (P ≤ 0·05) than the uncorrected counterpart. Differences in both the kinetics and extent of AA absorption were observed across AA. For example, the time to reach half of the apparent AA absorption (T50) was 1·5 and 3·4 h for Met and Arg, respectively, whereas their extent of apparent absorption was 93 and 73 %. Negative correlations between parameters related to kinetics and the extent of apparent absorption were observed (e.g. for T50 r = -0·81; P < 0·001). The kinetics of AA absorption is related to the extent of AA absorption.Item Protein quality as a complementary functional unit in life cycle assessment (LCA).(Springer Nature, 2022-12-28) McAuliffe GA; Takahashi T; Beal T; Huppertz T; Leroy F; Buttriss J; Collins AL; Drewnowski A; McLaren SJ; Ortenzi F; van der Pols JC; van Vliet S; Lee MRFGOAL AND THEORETICAL COMMENTARY: A number of recent life cycle assessment (LCA) studies have concluded that animal-sourced foods should be restricted-or even avoided-within the human diet due to their relatively high environmental impacts (particularly those from ruminants) compared with other protein-rich foods (mainly protein-rich plant foods). From a nutritional point of view, however, issues such as broad nutrient bioavailability, amino acid balances, digestibility and even non-protein nutrient density (e.g., micronutrients) need to be accounted for before making such recommendations to the global population. This is especially important given the contribution of animal sourced foods to nutrient adequacy in the global South and vulnerable populations of high-income countries (e.g., children, women of reproductive age and elderly). Often, however, LCAs simplify this reality by using 'protein' as a functional unit in their models and basing their analyses on generic nutritional requirements. Even if a 'nutritional functional unit' (nFU) is utilised, it is unlikely to consider the complexities of amino acid composition and subsequent protein accretion. The discussion herein focuses on nutritional LCA (nLCA), particularly on the usefulness of nFUs such as 'protein,' and whether protein quality should be considered when adopting the nutrient as an (n)FU. Further, a novel and informative case study is provided to demonstrate the strengths and weaknesses of protein-quality adjustment. CASE STUDY METHODS: To complement current discussions, we present an exploratory virtual experiment to determine how Digestible Indispensable Amino Acid Scores (DIAAS) might play a role in nLCA development by correcting for amino acid quality and digestibility. DIAAS is a scoring mechanism which considers the limiting indispensable amino acids (IAAs) within an IAA balance of a given food (or meal) and provides a percentage contribution relative to recommended daily intakes for IAA and subsequent protein anabolism; for clarity, we focus only on single food items (4 × animal-based products and 4 × plant-based products) in the current case exemplar. Further, we take beef as a sensitivity analysis example (which we particularly recommend when considering IAA complementarity at the meal-level) to elucidate how various cuts of the same intermediary product could affect the interpretation of nLCA results of the end-product(s). RECOMMENDATIONS: First, we provide a list of suggestions which are intended to (a) assist with deciding whether protein-quality correction is necessary for a specific research question and (b) acknowledge additional uncertainties by providing mitigating opportunities to avoid misinterpretation (or worse, dis-interpretation) of protein-focused nLCA studies. We conclude that as relevant (primary) data availability from supply chain 'gatekeepers' (e.g., international agri-food distributors and processors) becomes more prevalent, detailed consideration of IAA provision of contrasting protein sources needs to be acknowledged-ideally quantitatively with DIAAS being one example-in nLCA studies utilising protein as a nFU. We also contend that future nLCA studies should discuss the complementarity of amino acid balances at the meal-level, as a minimum, rather than the product level when assessing protein metabolic responses of consumers. Additionally, a broader set of nutrients should ideally be included when evaluating "protein-rich foods" which provide nutrients that extend beyond amino acids, which is of particular importance when exploring dietary-level nLCA.
