Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Abundant dsRNA picobirnaviruses show little geographic or host association in terrestrial systems.
    (Elsevier, 2023-08) Knox MA; Wierenga J; Biggs PJ; Gedye K; Almeida V; Hall R; Kalema-Zikusoka G; Rubanga S; Ngabirano A; Valdivia-Granda W; Hayman DTS
    Picobirnaviruses are double-stranded RNA viruses known from a wide range of host species and locations but with unknown pathogenicity and host relationships. Here, we examined the diversity of picobirnaviruses from cattle and gorillas within and around Bwindi Impenetrable Forest National Park (BIFNP), Uganda, where wild and domesticated animals and humans live in relatively close contact. We use metagenomic sequencing with bioinformatic analyses to examine genetic diversity. We compared our findings to global Picobirnavirus diversity using clustering-based analyses. Picobirnavirus diversity at Bwindi was high, with 14 near-complete RdRp and 15 capsid protein sequences, and 497 new partial viral sequences recovered from 44 gorilla samples and 664 from 16 cattle samples. Sequences were distributed throughout a phylogenetic tree of globally derived picobirnaviruses. The relationship with Picobirnavirus diversity and host taxonomy follows a similar pattern to the global dataset, generally lacking pattern with either host or geography.
  • Item
    A cross-sectional investigation of Leptospira at the wildlife-livestock interface in New Zealand
    (PLOS, 2023-09-06) Moinet M; Oosterhof H; Nisa S; Haack N; Wilkinson DA; Aberdein D; Russell JC; Vallée E; Collins-Emerson J; Heuer C; Benschop J; Stevenson B
    There has been a recent upsurge in human cases of leptospirosis in New Zealand, with wildlife a suspected emerging source, but up-to-date knowledge on this topic is lacking. We conducted a cross-sectional study in two farm environments to estimate Leptospira seroprevalence in wildlife and sympatric livestock, PCR/culture prevalence in wildlife, and compare seroprevalence and prevalence between species, sex, and age groups. Traps targeting house mice (Mus musculus), black rats (Rattus rattus), hedgehogs (Erinaceus europaeus) and brushtail possums (Trichosurus vulpecula) were set for 10 trap-nights in March-April 2017 on a dairy (A) and a beef and sheep (B) farm. Trapped wild animals and an age-stratified random sample of domestic animals, namely cattle, sheep and working dogs were blood sampled. Sera were tested by microagglutination test for five serogroups and titres compared using a Proportional Similarity Index (PSI). Wildlife kidneys were sampled for culture and qPCR targeting the lipL32 gene. True prevalence in mice was assessed using occupancy modelling by collating different laboratory results. Infection profiles varied by species, age group and farm. At the MAT cut-point of ≥ 48, up to 78% of wildlife species, and 16-99% of domestic animals were seropositive. Five of nine hedgehogs, 23/105 mice and 1/14 black rats reacted to L. borgpetersenii sv Ballum. The sera of 4/18 possums and 4/9 hedgehogs reacted to L. borgpetersenii sv Hardjobovis whilst 1/18 possums and 1/9 hedgehogs reacted to Tarassovi. In ruminants, seroprevalence for Hardjobovis and Pomona ranged 0-90% and 0-71% depending on the species and age group. Titres against Ballum, Tarassovi and Copenhageni were also observed in 4-20%, 0-25% and 0-21% of domestic species, respectively. The PSI indicated rodents and livestock had the most dissimilar serological responses. Three of nine hedgehogs, 31/105 mice and 2/14 rats were carrying leptospires (PCR and/or culture positive). True prevalence estimated by occupancy modelling in mice was 38% [95% Credible Interval 26, 51%] on Farm A and 22% [11, 40%] on Farm B. In the same environment, exposure to serovars found in wildlife species was commonly detected in livestock. Transmission pathways between and within species should be assessed to help in the development of efficient mitigation strategies against Leptospira.
  • Item
    Papillomaviruses in Domestic Cats
    (MDPI (Basel, Switzerland), 2021-08-22) Munday JS; Thomson NA; Beatty JA; Tasker S
    Papillomaviruses (PVs) are well established to cause hyperplastic papillomas (warts) in humans and animals. In addition, due to their ability to alter cell regulation, PVs are also recognized to cause approximately 5% of human cancers and these viruses have been associated with neoplasia in a number of animal species. In contrast to other domestic species, cats have traditionally been thought to less frequently develop disease due to PV infection. However, in the last 15 years, the number of viruses and the different lesions associated with PVs in cats have greatly expanded. In this review, the PV life cycle and the subsequent immune response is briefly discussed along with methods used to investigate a PV etiology of a lesion. The seven PV types that are currently known to infect cats are reviewed. The lesions that have been associated with PV infections in cats are then discussed and the review finishes with a brief discussion on the use of vaccines to prevent PV-induced disease in domestic cats.
  • Item
    Review: The Five Domains model and promoting positive welfare in pigs
    (Elsevier B.V. on behalf of The Animal Consortium, 2022-06-16) Kells NJ
    Public concern for the welfare of farm animals has increased over recent years. Meeting public demands for higher animal welfare products requires robust animal welfare assessment tools that enable the user to identify areas of potential welfare compromise and enhancement. The Five Domains model is a structured, systematic, and comprehensive framework for assessing welfare risks and enhancement in sentient animals. Since its inception in 1994, the model has undergone regular updates to incorporate advances in animal welfare understanding and scientific knowledge. The model consists of five areas, or domains, that focus attention on specific factors or conditions that may impact on an animal's welfare. These include four physical/functional domains: nutrition, physical environment, health, and behavioural interactions, and a fifth mental or affective state domain. The first three domains draw attention to welfare-significant internal physical/functional states within the animal, whereas the fourth deals with welfare-relevant features of the animal's external physical and social environment. Initially named "Behaviour" Domain 4 was renamed "Behavioural Interactions" in the 2020 iteration of the model and was expanded to include three categories: interactions with the environment, interactions with other animals and interactions with humans. These explicitly focus attention on environmental and social circumstances that may influence the animal's ability to exercise agency, an important determinant of welfare. Once factors in Domains 1-4 have been considered, the likely consequences, in terms of the animal's subjective experiences, are assigned to Domain 5 (affective state). The integrated outcome of all negative and positive mental experiences accumulated in Domain 5 represents the animal's current welfare state. Because the model specifically draws attention to conditions that may positively influence welfare, it provides a useful framework for identifying opportunities to promote positive welfare in intensively farmed animals. When negative affective experiences are minimised, providing animals with the opportunity to engage in species-specific rewarding behaviours may shift them into an overall positive welfare state. In domestic pigs, providing opportunities for foraging, play, and nest building, along with improving the quality of pig-human interactions, has the potential to promote positive welfare.