Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
16 results
Search Results
Item Upscaling effects on infectious disease emergence risk emphasize the need for local planning in primary prevention within biodiversity hotspots(Springer Nature Limited, 2025-10-27) Muylaert RL; Wilkinson DA; Dwiyanti EI; Hayman DTSZoonotic risk assessments are increasingly vital in the wake of recent epidemics. The microbial diversity of parasitic organisms correlates with host species richness, with regions of high biodiversity facing elevated risks of emerging zoonotic infections. While habitat loss and fragmentation reduce species diversity, anthropogenic encroachment, particularly in forested areas, amplifies human exposure to novel pathogens. This study integrates host habitat, biodiversity, human encroachment, and population at risk to estimate novel disease emergence and epidemic risk at multiple spatial scales. Using Java, Indonesia, as a case study, we demonstrate that degrading spatial resolution leads to information loss, with optimal resolutions typically below 2000 m, ideally around 500 m when native-resolution processing is unfeasible. Gravity models of epidemic spread highlight Jakarta and West Java as high-risk areas, with varying contributions from surrounding regions. Our spatial analysis underscores the influence of population centers on forest management and agroforestry practices. These findings offer valuable insights for guiding pandemic prevention research and improving pathogen- and driver-based risk monitoring strategies.Item Early evolution of beetles regulated by the end-Permian deforestation.(eLife Sciences Publications Ltd, 2021-11-08) Zhao X; Yu Y; Clapham ME; Yan E; Chen J; Jarzembowski EA; Zhao X; Wang B; Perry GHThe end-Permian mass extinction (EPME) led to a severe terrestrial ecosystem collapse. However, the ecological response of insects-the most diverse group of organisms on Earth-to the EPME remains poorly understood. Here, we analyse beetle evolutionary history based on taxonomic diversity, morphological disparity, phylogeny, and ecological shifts from the Early Permian to Middle Triassic, using a comprehensive new dataset. Permian beetles were dominated by xylophagous stem groups with high diversity and disparity, which probably played an underappreciated role in the Permian carbon cycle. Our suite of analyses shows that Permian xylophagous beetles suffered a severe extinction during the EPME largely due to the collapse of forest ecosystems, resulting in an Early Triassic gap of xylophagous beetles. New xylophagous beetles appeared widely in the early Middle Triassic, which is consistent with the restoration of forest ecosystems. Our results highlight the ecological significance of insects in deep-time terrestrial ecosystems.Item Two new genera of tokoriro (Orthoptera: Rhaphidophoridae: Macropathinae) from Aotearoa New Zealand(Magnolia Press, 2024-07-19) Trewick SATwo new genera and three new species of forest inhabiting Macropathinae (Orthoptera: Rhaphidophoridae) are described from Aotearoa New Zealand. Crux Trewick gen. nov. is described with two new species, Crux boudica sp. nov. from Rakiura Stewart Island and southwest South Island and Crux heggi sp. nov. from northwest South Island. The monotypic genus Occultastella Trewick gen. nov. is represented by Occultastella morgani sp. nov. from northwest South Island.Item Globally invariant metabolism but density-diversity mismatch in springtails(Springer Nature Limited, 2023-02-07) Potapov AM; Guerra CA; van den Hoogen J; Babenko A; Bellini BC; Berg MP; Chown SL; Deharveng L; Kováč Ľ; Kuznetsova NA; Ponge J-F; Potapov MB; Russell DJ; Alexandre D; Alatalo JM; Arbea JI; Bandyopadhyaya I; Bernava V; Bokhorst S; Bolger T; Castaño-Meneses G; Chauvat M; Chen T-W; Chomel M; Classen AT; Cortet J; Čuchta P; Manuela de la Pedrosa A; Ferreira SSD; Fiera C; Filser J; Franken O; Fujii S; Koudji EG; Gao M; Gendreau-Berthiaume B; Gomez-Pamies DF; Greve M; Tanya Handa I; Heiniger C; Holmstrup M; Homet P; Ivask M; Janion-Scheepers C; Jochum M; Joimel S; Claudia S Jorge B; Jucevica E; Ferlian O; Iuñes de Oliveira Filho LC; Klauberg-Filho O; Baretta D; Krab EJ; Kuu A; de Lima ECA; Lin D; Lindo Z; Liu A; Lu J-Z; Luciañez MJ; Marx MT; McCary MA; Minor MA; Nakamori T; Negri I; Ochoa-Hueso R; Palacios-Vargas JG; Pollierer MM; Querner P; Raschmanová N; Rashid MI; Raymond-Léonard LJ; Rousseau L; Saifutdinov RA; Salmon S; Sayer EJ; Scheunemann N; Scholz C; Seeber J; Shveenkova YB; Stebaeva SK; Sterzynska M; Sun X; Susanti WI; Taskaeva AA; Thakur MP; Tsiafouli MA; Turnbull MS; Twala MN; Uvarov AV; Venier LA; Widenfalk LA; Winck BR; Winkler D; Wu D; Xie Z; Yin R; Zeppelini D; Crowther TW; Eisenhauer N; Scheu SSoil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning.Item Volcanism and rapid sedimentation affect the benthic communities of Deception Island, Antarctica(Elsevier B.V., 2021-05-01) Angulo-Preckler C; Pernet P; García-Hernández C; Kereszturi G; Álvarez-Valero AM; Hopfenblatt J; Gómez-Ballesteros M; Otero XL; Caza J; Ruiz-Fernández J; Geyer A; Avila CDeception Island is amongst the most active volcanoes in the Southern Ocean, with over 20 explosive eruptions in the last ca. 200 years. The eruption that formed the caldera at Deception Island occurred 3980 ± 125 calendar years Before Present, and it is the largest eruptive event documented in Antarctica during Holocene. Since then, post-caldera volcanic activity has comprised many scattered eruptive vents across the island. Mortality of benthic organisms has been reported during the most recent eruptions occurred on the island, in 1967, 1969, and 1970 Common Era (CE), with very low abundances of organisms during the 1967–1973 CE period. Within the sea-flooded part of the caldera depression, named Port Foster, a submarine volcanic axis with several volcanic cones is observed. An interdisciplinary team sampled the best morphologically preserved volcanic edifice within Port Foster, the so-called Stanley Patch. Geophysical data traced the volcano and characterized its morphology and inner structure. Underwater scuba sampling allowed to acquire sediment and rock samples, photographs and video images of the benthic organisms and seascape. Morphology of Stanley Patch cone and textural characteristics of the collected pyroclastic rocks indicate that the volcanic edifice was originated during an explosive eruption. Furthermore, the lack of palagonitization, quenched pyroclast margins, and hyaloclastite deposits indicate that this cone has formed on-land, before the caldera floor became inundated by the seawater, highlighting the complex intra-caldera evolution of Deception Island. A sediment core from the crater was collected for sedimentological, and geochemical analysis. Antarctic climate and seasonal sea ice, together with organic degradation due to high sedimentation rates, explain the low total organic carbon data measured. The volcanic history of the island has probably avoided the development of a stable benthic community over time, similar to other Antarctic shallow communities. Moreover, the current geomorphological conditions still shape different benthic communities than in the surrounding coastal ecosystems. Stanley Patch, and the whole Port Foster, provide a natural laboratory for benchmarking the reestablishment of benthic communities on a volcanic-influenced shallow marine environment, offering relevant data for future studies evaluating global climate change effects on the Antarctic seabed.Item Freshwater invertebrate responses to fine sediment stress: A multi-continent perspective(John Wiley and Sons Ltd, 2024-01) McKenzie M; Brooks A; Callisto M; Collins AL; Durkota JM; Death RG; Jones JI; Linares MS; Matthaei CD; Monk WA; Murphy JF; Wagenhoff A; Wilkes M; Wood PJ; Mathers KLExcessive fine sediment (particles <2 mm) deposition in freshwater systems is a pervasive stressor worldwide. However, understanding of ecological response to excess fine sediment in river systems at the global scale is limited. Here, we aim to address whether there is a consistent response to increasing levels of deposited fine sediment by freshwater invertebrates across multiple geographic regions (Australia, Brazil, New Zealand and the UK). Results indicate ecological responses are not globally consistent and are instead dependent on both the region and the facet of invertebrate diversity considered, that is, taxonomic or functional trait structure. Invertebrate communities of Australia were most sensitive to deposited fine sediment, with the greatest rate of change in communities occurring when fine sediment cover was low (below 25% of the reach). Communities in the UK displayed a greater tolerance with most compositional change occurring between 30% and 60% cover. In both New Zealand and Brazil, which included the most heavily sedimented sampled streams, the communities were more tolerant or demonstrated ambiguous responses, likely due to historic environmental filtering of invertebrate communities. We conclude that ecological responses to fine sediment are not generalisable globally and are dependent on landscape filters with regional context and historic land management playing important roles.Item Malaria Risk Drivers in the Brazilian Amazon: Land Use-Land Cover Interactions and Biological Diversity.(MDPI (Basel, Switzerland), 2023-08-01) Gonzalez Daza W; Muylaert RL; Sobral-Souza T; Lemes Landeiro V; Oren E; Blanco GMalaria is a prevalent disease in several tropical and subtropical regions, including Brazil, where it remains a significant public health concern. Even though there have been substantial efforts to decrease the number of cases, the reoccurrence of epidemics in regions that have been free of cases for many years presents a significant challenge. Due to the multifaceted factors that influence the spread of malaria, influencing malaria risk factors were analyzed through regional outbreak cluster analysis and spatio-temporal models in the Brazilian Amazon, incorporating climate, land use/cover interactions, species richness, and number of endemic birds and amphibians. Results showed that high amphibian and bird richness and endemism correlated with a reduction in malaria risk. The presence of forest had a risk-increasing effect, but it depended on its juxtaposition with anthropic land uses. Biodiversity and landscape composition, rather than forest formation presence alone, modulated malaria risk in the period. Areas with low endemic species diversity and high human activity, predominantly anthropogenic landscapes, posed high malaria risk. This study underscores the importance of considering the broader ecological context in malaria control efforts.Item Environmental stewardship: A systematic scoping review.(Public Library of Science (PLoS), 2024-05-07) McLeod LJ; Kitson JC; Dorner Z; Tassell-Matamua NA; Stahlmann-Brown P; Milfont TL; Hine DW; Belgrano AEnvironmental stewardship is a term describing both the philosophy and the actions required to protect, restore, and sustainably use natural resources for the future benefit of the environment and society. In this paper, we review the environmental science literature to map the types of practical actions that are identified as 'environmental stewardship' using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for scoping reviews. We specifically mapped: 1) the type of actions and outcomes targeting the natural environment that have been categorized as environmental stewardship, 2) the main actors, and the underlying factors influencing their environmental stewardship actions, and 3) the methods used to mobilize environmental stewardship actions once these factors are known. From the 77 selected articles, we found the term environmental stewardship encompassed a multitude of different actions, undertaken by a range of actors and addressing an array of issues that impact biodiversity on the land and in the water. These stewardship actions were conducted on both privately-owned and publicly managed lands and waterways, and across rural and urban landscapes. Despite many studies identifying characteristics and underlying behavioral factors that predicted actors' participation in stewardship actions, there were few studies formally evaluating interventions to increase stewardship. Our review highlighted the term environmental stewardship is not embraced by all and is viewed by some as being inconsistent with aspects of indigenous worldviews. A better understanding of the concept of environmental stewardship and continued practical research into its practice is fundamental to empowering people to demand and enact environmental stewardship as well as for evaluating the success of their actions.Item A perspective on green, blue, and grey spaces, biodiversity, microbiota, and human health.(Elsevier B.V., 2023-09-20) Potter JD; Brooks C; Donovan G; Cunningham C; Douwes JHumans have lived from equator to poles for millennia but are now increasingly intruding into the wild spaces of other species and steadily extruding ourselves from our own wild spaces, with a profound impact on: our relationship with the natural world; survival of other species; pollution; climate change; etc. We have yet to grasp how these changes directly impact our own health. The primary focus of this paper is on the beneficial influence of proximity to the natural environment. We summarize the evidence for associations between exposure to green space and blue space and improvements in health. In contrast, grey space - the urban landscape - largely presents hazards as well as reducing exposure to green and blue space and isolating us from the natural environment. We discuss various hypotheses that might explain why green, blue, and grey space affect health and focus particularly on the importance of the biodiversity hypothesis and the role of microbiota. We discuss possible mechanisms and exposure routes - air, soil, and water. We highlight the problem of exposure assessment, noting that many of our current tools are not fit for the purpose of understanding exposure to green and blue space, aerosols, soils, and water. We briefly discuss possible differences between indigenous perspectives on the nature of our relationship with the environment and the more dominant international-science view. Finally, we present research gaps and discuss future directions, particularly focusing on the ways in which we might - even in the absence of a full understanding of the mechanisms by which blue, green, and grey space affect our health - begin to implement policies to restore some balance to our environment of with the aim of reducing the large global burden of ill health.Item Integrating pH into the metabolic theory of ecology to predict bacterial diversity in soil(National Academy of Sciences, 2023-01-17) Luan L; Jiang Y; Dini-Andreote F; Crowther TW; Li P; Bahram M; Zheng J; Xu Q; Zhang X-X; Sun B; Brown JMicroorganisms play essential roles in soil ecosystem functioning and maintenance, but methods are currently lacking for quantitative assessments of the mechanisms underlying microbial diversity patterns observed across disparate systems and scales. Here we established a quantitative model to incorporate pH into metabolic theory to capture and explain some of the unexplained variation in the relationship between temperature and soil bacterial diversity. We then tested and validated our newly developed models across multiple scales of ecological organization. At the species level, we modeled the diversification rate of the model bacterium Pseudomonas fluorescens evolving under laboratory media gradients varying in temperature and pH. At the community level, we modeled patterns of bacterial communities in paddy soils across a continental scale, which included natural gradients of pH and temperature. Last, we further extended our model at a global scale by integrating a meta-analysis comprising 870 soils collected worldwide from a wide range of ecosystems. Our results were robust in consistently predicting the distributional patterns of bacterial diversity across soil temperature and pH gradients-with model variation explaining from 7 to 66% of the variation in bacterial diversity, depending on the scale and system complexity. Together, our study represents a nexus point for the integration of soil bacterial diversity and quantitative models with the potential to be used at distinct spatiotemporal scales. By mechanistically representing pH into metabolic theory, our study enhances our capacity to explain and predict the patterns of bacterial diversity and functioning under current or future climate change scenarios.
