Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
5 results
Search Results
Item Effects of microwave, ultrasound, and high-pressure homogenization on the physicochemical properties of sugarcane fibre and its application in white bread(Elsevier Ltd., 2023-07-15) Abdol Rahim Yassin Z; Binte Abdul Halim FN; Taheri A; Goh KKT; Du JSugarcane fibre (SCF) is known as an insoluble dietary fibre and a by-product from sugar manufacturing industry. The physicochemical and structural properties of SCF were modified using microwave irradiation at 5% and 10% SCF for 5 and 10 min (MW5%,15m, MW10%,5m, MW10%,15m), ultrasound at 30% amplitude, 7% SCF, for 1.5 h or 3 h (US1h, US2h), and high-pressure homogenization at 1% SCF, 2000 bar for 1 and 2 passes (HPH1p, HPH2p). Different types of disruption on the morphology of SCF were observed with different physical treatments confirmed by scanning electron microscopy. HPH2p treated SCF exhibited the largest particle size, and highest water and oil-holding capacities. Fourier-transform infrared spectroscopy results showed that all physical treatments were able to reduce hemicellulose and enhance cellulose content in SCFs, especially for HPH treatments. After making dough and bread with treated and untreated SCF, HPH2p SCF incorporated bread had the firmest texture, followed by MW10%,15m, while these two samples have the lowest specific volume. The maximum height of bread was significantly lower in breads incorporated with HPH2p, US1.5h and US3h. Subsequently, glycemic response decreased in all SCF-incorporated breads compared to white bread reference.Item Edible insect powder for enrichment of bakery products– A review of nutritional, physical characteristics and acceptability of bakery products to consumers(Elsevier BV, 2023-12) Amoah I; Cobbinah JC; Yeboah JA; Essiam FA; Lim JJ; Tandoh MA; Rush EBakery products including bread are traditionally good sources of carbohydrate but not nutrient-dense. Enrichment with edible insect powder could improve the quantity and quality of protein, fat and dietary fibers to bakery products. A systematic search carried out on the databases PubMed, Scopus and ScienceDirect identified 44 articles that would answer the question: what is known about the effect of enrichment of bakery products with various edible insect powders on the physical, nutritional composition and sensory properties of bakery products. The search strategy and terms applied were (Insect* OR Edible insect* OR Entomophagy*) AND (Bakery product* OR Bake* product*). Bread was the most common bakery product that was insect-enriched, yet muffins/biscuits/crackers/cookies were also reported. Commonly reported edible insects and their larvae were crickets, mealworms, palm weevil larvae, grasshoppers and African emperor moth caterpillars. Before milling into powders, insects and larvae were pre-treated by freeze-drying, oven/tray and microwave drying, blanching and roasting but was not reported for all studies. Generally, bread with up to 10% and muffins/biscuits/crackers/cookies with 5% of insect powder were acceptable to consumers. New areas of research should focus on comparing the water activity, shelf-life and cost of pre-treatment processing methods alongside the nutritional properties of edible insect powders.Item Effects of Defatted Rice Bran-Fortified Bread on the Gut Microbiota Composition of Healthy Adults With Low Dietary Fiber Intake: Protocol for a Crossover Randomized Controlled Trial(JMIR Publications, 2024-08-29) Ng HM; Maggo J; Wall CL; Bayer SB; McNabb WC; Mullaney JA; Foster M; Cabrera DL; Fraser K; Cooney J; Trower T; Günther CS; Frampton C; Gearry RB; Roy NCBACKGROUND: Inadequate dietary fiber (DF) intake is associated with several human diseases. Bread is commonly consumed, and its DF content can be increased by incorporating defatted rice bran (DRB). OBJECTIVE: This first human study on DRB-fortified bread primarily aims to assess the effect of DRB-fortified bread on the relative abundance of a composite of key microbial genera and species in fecal samples. Secondary outcomes include clinical (cardiovascular risk profile), patient-reported (daily bread consumption and bowel movement, gut comfort, general well-being, and total DF intake), biological (fecal microbiota gene abundances, and fecal and plasma metabolites), and physiome (whole-gut and regional transit time and gas fermentation profiles) outcomes in healthy adults with low DF intake. METHODS: This is a 2-armed, placebo-controlled, double-blinded, crossover randomized controlled trial. The study duration is 14 weeks: 2 weeks of lead-in, 4 weeks of intervention per phase, 2 weeks of washout, and 2 weeks of follow-up. Overall, 60 healthy adults with low DF intake (<18 g [female individuals] or <22 g [male individuals] per day) were recruited in Christchurch, New Zealand, between June and December 2022. Randomly assigned participants consumed 3 (female individuals) or 4 (male individuals) slices of DRB-fortified bread per day and then placebo bread, and vice versa. The DRB-fortified bread provided 8 g (female individuals) or 10.6 g (male individuals) of total DF, whereas the placebo (a matched commercial white toast bread) provided 2.7 g (female individuals) or 3.6 g (male individuals) of total DF. Before and after each intervention phase, participants provided fecal and blood samples to assess biological responses; completed a 3-day food diary to assess usual intakes and web-based questionnaires to assess gut comfort, general and mental well-being, daily bread intake, and bowel movement via an app; underwent anthropometry and blood pressure measurements; and drank blue food dye to assess whole-gut transit time. Additionally, 25% (15/60) of the participants ingested Atmo gas-sensing capsules to assess colonic gas fermentation profile and whole-gut and regional transit time. Mean differences from baseline will be compared between the DRB and placebo groups, as well as within groups (after the intervention vs baseline). For metabolome analyses, comparisons will be made within and between groups using postintervention values. RESULTS: Preliminary analysis included 56 participants (n=33, 59% female; n=23, 41% male). Due to the large dataset, data analysis was planned to be fully completed by the last quarter of 2024, with full results expected to be published in peer-reviewed journals by the end of 2024. CONCLUSIONS: This first human study offers insights into the prospect of consuming DRB-fortified bread to effectively modulate health-promoting gut microbes, their metabolism, and DF intake in healthy adults with low DF intake. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12622000884707; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=383814. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/59227.Item Effects of Green and Gold Kiwifruit Varieties on Antioxidant Neuroprotective Potential in Pigs as a Model for Human Adults.(MDPI (Basel, Switzerland), 2024-04-09) Kanon AP; Giezenaar C; Roy NC; Jayawardana IA; Lomiwes D; Montoya CA; McNabb WC; Henare SJ; Digiacomo MKiwifruit (KF) has shown neuroprotective potential in cell-based and rodent models by augmenting the capacity of endogenous antioxidant systems. This study aimed to determine whether KF consumption modulates the antioxidant capacity of plasma and brain tissue in growing pigs. Eighteen male pigs were divided equally into three groups: (1) bread, (2) bread + Actinidia deliciosa cv. 'Hayward' (green-fleshed), and (3) bread + A. chinensis cv. 'Hort16A' (yellow-fleshed). Following consumption of the diets for eight days, plasma and brain tissue (brain stem, corpus striatum, hippocampus, and prefrontal cortex) were collected and measured for biomarkers of antioxidant capacity, enzyme activity, and protein expression assessments. Green KF significantly increased ferric-reducing antioxidant potential (FRAP) in plasma and all brain regions compared with the bread-only diet. Gold KF increased plasma ascorbate concentration and trended towards reducing acetylcholinesterase activity in the brain compared with the bread-only diet. Pearson correlation analysis revealed a significant positive correlation between FRAP in the brain stem, prefrontal cortex, and hippocampus with the total polyphenol concentration of dietary interventions. These findings provide exploratory evidence for the benefits of KF constituents in augmenting the brain's antioxidant capacity that may support neurological homeostasis during oxidative stress.Item Glycaemic potency reduction by coarse grain structure in breads is largely eliminated during normal ingestion(Cambridge University Press on behalf of The Nutrition Society, 2022-05-28) Srv A; Mishra S; Hardacre A; Matia-Merino L; Goh K; Warren FJ; Monro JAThe hypothesis that coarse grain particles in breads reduce glycaemic response only if the particles remain intact during ingestion was tested. Three breads were formulated: (1) White bread (WB - reference), (2) 75 % of kibbled purple wheat in 25 % white bread matrix (PB) and (3) a 1:1 mixture of 37·5 % kibbled soya beans and 37·5 % of kibble purple wheat in 25 % white bread matrix (SPB). Each bread was ingested in three forms: unchewed (U), as customarily consumed (C) and homogenised (H). Twelve participants ingested 40 g available carbohydrate portions of each bread in each form, with post-prandial blood glucose measured over 120 min. Glycaemic responses to WB were the same regardless of its form when ingested. Unchewed PB had significantly less glycaemic effect than WB, whereas the C and H forms were similar to WB. Based on a glycaemic index (GI) of 70 for WB, the GI values for the C, U and H breads, respectively, were WB: 70·0, 70 and 70, PB: 75, 42 and 61, SPB: 57, 48 and 55 (%) (Least significant difference = 17·43, P < 0·05, bold numbers significantly different from WB). The similar glycaemic response to the H and C forms of the breads, and their difference from the U form, showed that the glycaemia-moderating effect of grain structure on starch digestion was lost during customary ingestion of bread. We conclude that the kibbled-grain structure may not effectively retard starch digestion in breads as normally consumed because it is largely eliminated by ingestive processes including chewing.
