Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
Search Results
Item Interaction between Rumen Epithelial miRNAs-Microbiota-Metabolites in Response to Cold-Season Nutritional Stress in Tibetan Sheep.(MDPI (Basel, Switzerland), 2023-09-23) Lv W; Sha Y; Liu X; He Y; Hu J; Wang J; Li S; Guo X; Shao P; Zhao F; Li M; Freking BTibetan sheep are already well adapted to cold season nutrient stress on the Tibetan Plateau. Rumen, an important nutrient for metabolism and as an absorption organ in ruminants, plays a vital role in the cold stress adaptations of Tibetan sheep. Ruminal microbiota also plays an indispensable role in rumen function. In this study, combined multiomics data were utilized to comprehensively analyze the interaction mechanism between rumen epithelial miRNAs and microbiota and their metabolites in Tibetan sheep under nutrient stress in the cold season. A total of 949 miRNAs were identified in the rumen epithelium of both cold and warm seasons. A total of 62 differentially expressed (DE) miRNAs were screened using FC > 1.5 and p value < 0.01, and a total of 20,206 targeted genes were predicted by DE miRNAs. KEGG enrichment analysis revealed that DE miRNA-targeted genes were mainly enriched in axon guidance(ko04360), tight junction(ko04530), inflammatory mediator regulation of TRP channels(ko04750) and metabolism-related pathways. Correlation analysis revealed that rumen microbiota, rumen VFAs and DE miRNAs were all correlated. Further study revealed that the targeted genes of cold and warm season rumen epithelial DE miRNAs were coenriched with differential metabolites of microbiota in glycerophospholipid metabolism (ko00564), apoptosis (ko04210), inflammatory mediator regulation of TRP channels (ko04750), small cell lung cancer (ko05222), and choline metabolism in cancer (ko05231) pathways. There are several interactions between Tibetan sheep rumen epithelial miRNAs, rumen microbiota, and microbial metabolites, mainly through maintaining rumen epithelial barrier function and host homeostasis of choline and cholesterol, improving host immunity, and promoting energy metabolism pathways, thus enabling Tibetan sheep to effectively respond to cold season nutrient stress. The results also suggest that rumen microbiota have coevolved with their hosts to improve the adaptive capacity of Tibetan sheep to cold season nutrient stress, providing a new perspective for the study of cold season nutritional stress adaptation in Tibetan sheep.Item Comparative Transcriptomics of Multi-Stress Responses in Pachycladon cheesemanii and Arabidopsis thaliana.(MDPI (Basel, Switzerland), 2023-07-11) Dong Y; Gupta S; Wargent JJ; Putterill J; Macknight RC; Gechev TS; Mueller-Roeber B; Dijkwel PP; You FMThe environment is seldom optimal for plant growth and changes in abiotic and biotic signals, including temperature, water availability, radiation and pests, induce plant responses to optimise survival. The New Zealand native plant species and close relative to Arabidopsis thaliana, Pachycladon cheesemanii, grows under environmental conditions that are unsustainable for many plant species. Here, we compare the responses of both species to different stressors (low temperature, salt and UV-B radiation) to help understand how P. cheesemanii can grow in such harsh environments. The stress transcriptomes were determined and comparative transcriptome and network analyses discovered similar and unique responses within species, and between the two plant species. A number of widely studied plant stress processes were highly conserved in A. thaliana and P. cheesemanii. However, in response to cold stress, Gene Ontology terms related to glycosinolate metabolism were only enriched in P. cheesemanii. Salt stress was associated with alteration of the cuticle and proline biosynthesis in A. thaliana and P. cheesemanii, respectively. Anthocyanin production may be a more important strategy to contribute to the UV-B radiation tolerance in P. cheesemanii. These results allowed us to define broad stress response pathways in A. thaliana and P. cheesemanii and suggested that regulation of glycosinolate, proline and anthocyanin metabolism are strategies that help mitigate environmental stress.
