Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Physico-chemical and Textural Properties of 3D Printed Plant-based and Hybrid Soft Meat Analogs
    (Springer Science+Business Media, LLC, part of Springer Nature, 2023-06) Wang T; Kaur L; Beniwal AS; Furuhata Y; Aoyama H; Singh J
    This study investigated the physico-chemical and textural properties of 3D-printed pea protein-only and pea protein-chicken-based hybrid meat analogs. Both pea protein isolate (PPI)-only and hybrid cooked meat analogs had a similar moisture content of approximately 70%, which was similar to that of chicken mince. However, the protein content increased significantly with the amount of chicken in the hybrid paste undergoing 3D printing and cooking. Significant differences were observed in the hardness values of the non-printed cooked pastes and the 3D printed cooked counterparts, suggesting that the 3D printing process reduces the hardness of the samples and is a suitable method to produce a soft meal, and has significant potential in elderly health care. Scanning electron microscopy (SEM) revealed that adding chicken to the plant protein matrix led to better fiber formation. PPI itself was not able to form any fibers merely by 3D printing and cooking in boiling water. Protein-protein interactions were also studied through the protein solubility test, which indicated that hydrogen bonding was the major bonding that contributed to the structure formation in cooked printed meat analogs. In addition, disulfide bonding was correlated with improved fibrous structures, as observed through SEM.
  • Item
    Contribution of the proximal and distal gastric phases to the breakdown of cooked starch-rich solid foods during static in vitro gastric digestion.
    (Elsevier, 2022-07) Nadia J; Bronlund JE; Singh H; Singh RP; Bornhorst GM
    In vitro gastric digestion studies commonly focus on the acidic environment of the stomach (the distal phase), neglecting that the contact time between food and salivary amylase can be extended during bolus' temporary storage in the proximal stomach (the proximal phase). Consequently, the role of the proximal phase of gastric digestion on the breakdown of solid starch-based foods is not well understood. This study aimed to address this question using a static in vitro digestion approach. Cooked starch-rich foods of different physical structures (wheat couscous, wheat pasta, rice couscous, rice noodle, and rice grain) were subjected to 30 s oral phase digestion, followed by prolonged incubation of the oral phase mixture (pH 7) for up to 30 min representing different proximal phase digestion times. Each proximal phase sample was sequentially incubated in excess simulated gastric fluid (distal phase, pH 2) for up to an additional 180 min. The proximal phase aided solid food breakdown through starch hydrolysis that caused leaching of particles <2 mm. The distal phase led to softening of food particles, but the softening process was not enhanced with longer proximal phase. In foods with smaller initial size (couscous and rice couscous), a proximal phase of 15 min or longer followed by 180-min distal phase increased starch hydrolysis in the liquid and suspended solid fractions of the digesta, indicating the influence of food structure on acid hydrolysis during in vitro gastric digestion.
  • Item
    Probing the Double-Layered Cotyledon Cell Structure of Navy Beans: Barrier Effect of the Protein Matrix on In Vitro Starch Digestion
    (MDPI (Basel, Switzerland), 2023-01) Do DT; Singh J; Johnson S; Singh H; Bordoni A
    The microstructure of legumes plays a crucial role in regulating starch digestion and postprandial glycemic responses. Starch granules are double encapsulated within the outer cell wall and the inner protein matrix of legume cotyledon cells. Despite progress in understanding the role of cell walls in delaying starch digestion, the role of the protein matrix has received little research attention. The aim of this study was to evaluate if the protein matrix and cell wall may present combined physical barriers retarding enzyme hydrolysis of intracellular starch. Intact cotyledon cells were isolated from navy beans and used to assess the barrier effect of the protein matrix on the digestion of starch under conditions simulating the upper gastrointestinal tract. The cells were pretreated with pepsin at 37 °C and pH 2.0 for 1, 4, or 24 h and without pepsin for 24 h (control) to facilitate removal of the intracellular protein matrix prior to cooking and simulated in vitro digestion. A longer pretreatment time resulted in a lower protein content of the cells and a higher initial rate and extent of starch hydrolysis. We suggest that in addition to the primary cell wall barrier, the protein matrix provides a secondary barrier restricting the accessibility of α-amylase to starch. This study provides a new fundamental understanding of the relationship between the structural organization of legume cotyledon cells and starch digestion that could inform the design of novel low glycemic index foods.