Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
9 results
Search Results
Item The Effect of Pre-Exercise Caffeine and Glucose Ingestion on Endurance Capacity in Hypoxia: A Double-Blind Crossover Trial.(MDPI (Basel, Switzerland), 2024-10-25) Chiu C-H; Chen C-C; Ali A; Wu S-L; Wu C-L; Nieman DC; Schroder HThe impact of caffeine and glucose supplementation in a hypoxic environment on endurance exercise performance remains inconclusive. The current study examined the effect of pre-exercise carbohydrate and caffeine supplementation on endurance exercise performance in an acute hypoxic environment. Eight healthy active young males participated in this double-blind, within-subjects crossover study. Participants ingested the test drink 60 min before exercising at 50% Wmax for 90 min on a cycle ergometer (fatiguing preload); there followed an endurance performance test at 85% Wmax until exhaustion in a hypoxic chamber (~15%O2). Participants completed four experimental trials in a randomized order: caffeine (6 mg·kg-1; Caff), glucose (1 g·kg-1; CHO), caffeine (6 mg·kg-1) + glucose (1 g·kg-1; Caff-CHO), and taste- and color-matched placebo with no caffeine or CHO (PLA). Blood samples were collected during fasting, pre-exercise, every 30 min throughout the exercise, and immediately after exhaustion. The caffeine and glucose trials significantly enhanced endurance capacity in hypoxic conditions by Caff, 44% (68.8-31.5%, 95% confidence interval), CHO, 31% (44.7-15.6%), and Caff-CHO, 46% (79.1-13.2%). Plasma-free fatty-acid and glycerol concentrations were higher in Caff and PLA than in CHO and Caff-CHO (p < 0.05). The estimated rate of fat oxidation was higher in Caff and PLA than in CHO and Caff-CHO (p < 0.05). There were no significant differences in ratings of perceived exertion between trials. In conclusion, the ingestion of caffeine, glucose, or caffeine + glucose one hour before exercising in hypoxic conditions significantly improved 85% Wmax endurance performance after prolonged exercise.Item Changes to insulin sensitivity in glucose clearance systems and redox following dietary supplementation with a novel cysteine-rich protein: A pilot randomized controlled trial in humans with type-2 diabetes.(Elsevier B.V, 2023-10-07) Peeters WM; Gram M; Dias GJ; Vissers MCM; Hampton MB; Dickerhof N; Bekhit AE; Black MJ; Oxbøll J; Bayer S; Dickens M; Vitzel K; Sheard PW; Danielson KM; Hodges LD; Brønd JC; Bond J; Perry BG; Stoner L; Cornwall J; Rowlands DSWe recently developed a novel keratin-derived protein (KDP) rich in cysteine, glycine, and arginine, with the potential to alter tissue redox status and insulin sensitivity. The KDP was tested in 35 human adults with type-2 diabetes mellitus (T2DM) in a 14-wk randomised controlled pilot trial comprising three 2×20 g supplemental protein/day arms: KDP-whey (KDPWHE), whey (WHEY), non-protein isocaloric control (CON), with standardised exercise. Outcomes were measured morning fasted and following insulin-stimulation (80 mU/m2/min hyperinsulinaemic-isoglycaemic clamp). With KDPWHE supplementation there was good and very-good evidence for moderate-sized increases in insulin-stimulated glucose clearance rate (GCR; 26%; 90% confidence limits, CL 2%, 49%) and skeletal-muscle microvascular blood flow (46%; 16%, 83%), respectively, and good evidence for increased insulin-stimulated sarcoplasmic GLUT4 translocation (18%; 0%, 39%) vs CON. In contrast, WHEY did not effect GCR (-2%; -25%, 21%) and attenuated HbA1c lowering (14%; 5%, 24%) vs CON. KDPWHE effects on basal glutathione in erythrocytes and skeletal muscle were unclear, but in muscle there was very-good evidence for large increases in oxidised peroxiredoxin isoform 2 (oxiPRX2) (19%; 2.2%, 35%) and good evidence for lower GPx1 concentrations (-40%; -4.3%, -63%) vs CON; insulin stimulation, however, attenuated the basal oxiPRX2 response (4%; -16%, 24%), and increased GPx1 (39%; -5%, 101%) and SOD1 (26%; -3%, 60%) protein expression. Effects of KDPWHE on oxiPRX3 and NRF2 content, phosphorylation of capillary eNOS and insulin-signalling proteins upstream of GLUT4 translocation AktSer437 and AS160Thr642 were inconclusive, but there was good evidence for increased IRSSer312 (41%; 3%, 95%), insulin-stimulated NFκB-DNA binding (46%; 3.4%, 105%), and basal PAK-1Thr423/2Thr402 phosphorylation (143%; 66%, 257%) vs WHEY. Our findings provide good evidence to suggest that dietary supplementation with a novel edible keratin protein in humans with T2DM may increase glucose clearance and modify skeletal-muscle tissue redox and insulin sensitivity within systems involving peroxiredoxins, antioxidant expression, and glucose uptake.Item Oxidation of independent and combined ingested galactose and glucose during exercise.(American Physiological Society, 2022-10-06) Odell OJ; Impey SG; Shad BJ; Podlogar T; Salgueiro RB; Rowlands DS; Wallis GACoingestion of glucose and galactose has been shown to enhance splanchnic extraction and metabolism of ingested galactose at rest; effects during exercise are unknown. This study examined whether combined ingestion of galactose and glucose during exercise enhances exogenous galactose oxidation. Fourteen endurance-trained male and female participants [age, 27 (5) yr; V̇o2peak, 58.1 (7.0) mL·kg−1·min−1] performed cycle ergometry for 150 min at 50% peak power on four occasions, in a randomized counterbalanced manner. During exercise, they ingested beverages providing carbohydrates at rates of 0.4 g.min−1 galactose (GAL), 0.8 g.min−1 glucose (GLU), and on two occasions 0.8 g.min−1 total galactose-glucose (GAL + GLU; 1:1 ratio). Single-monosaccharide 13C-labeling (*) was used to calculate independent (GAL, GLU, GAL* + GLU, and GAL + GLU*) and combined (GAL* + GLU*, COMBINE) exogenous-monosaccharide oxidation between exercise. Plasma galactose concentrations with GAL + GLU [0.4 mmol.L; 95% confidence limits (CL): 0.1, 0.6] were lower (contrast: 0.5 mmol.L; 95% CL: 0.2, 0.8; P < 0.0001) than when GAL alone (0.9 mmol.L; 95% CL: 0.7, 1.2) was ingested. Exogenous carbohydrate oxidation with GAL alone (0.31 g·min−1; 95% CL: 0.28, 0.35) was marginally reduced (contrast: 0.05 g·min−1; 95% CL: −0.09, 0.00007; P = 0.01) when combined with glucose (GAL* + GLU 0.27 g·min−1; 0.24, 0.30). Total combined exogenous-carbohydrate oxidation (COMBINE: 0.57 g·min−1; 95% CL: 0.49, 0.64) was similar (contrast: 0.02 g·min−1; 95% CL: −0.05, 0.09; P = 0.63) when compared with isoenergetic GLU (0.55 g·min−1; 95% CL: 0.52, 0.58). In conclusion, coingestion of glucose and galactose did not enhance exogenous galactose oxidation during exercise. When combined, isoenergetic galactose-glucose ingestion elicited similar exogenous-carbohydrate oxidation to glucose suggesting galactose-glucose blends are a valid alternative for glucose as an exogenous-carbohydrate source during exercise. NEW & NOTEWORTHY Glucose and galactose coingestion blunted the galactosemia seen with galactose-only ingestion during exercise. Glucose and galactose coingestion did not enhance the oxidation of ingested galactose during exercise. Combined galactose-glucose (1:1 ratio) ingestion was oxidized to a similar extent as isoenergetic glucose-only ingestion during exercise. Galactose-glucose blends are a viable exogenous carbohydrate energy source for ingestion during exercise.Item A role for β-catenin in diet-induced skeletal muscle insulin resistance.(Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society, 2023-02-17) Masson SWC; Dissanayake WC; Broome SC; Hedges CP; Peeters WM; Gram M; Rowlands DS; Shepherd PR; Merry TLA central characteristic of insulin resistance is the impaired ability for insulin to stimulate glucose uptake into skeletal muscle. While insulin resistance can occur distal to the canonical insulin receptor-PI3k-Akt signaling pathway, the signaling intermediates involved in the dysfunction are yet to be fully elucidated. β-catenin is an emerging distal regulator of skeletal muscle and adipocyte insulin-stimulated GLUT4 trafficking. Here, we investigate its role in skeletal muscle insulin resistance. Short-term (5-week) high-fat diet (HFD) decreased skeletal muscle β-catenin protein expression 27% (p = 0.03), and perturbed insulin-stimulated β-cateninS552 phosphorylation 21% (p = 0.009) without affecting insulin-stimulated Akt phosphorylation relative to chow-fed controls. Under chow conditions, mice with muscle-specific β-catenin deletion had impaired insulin responsiveness, whereas under HFD, both mice exhibited similar levels of insulin resistance (interaction effect of genotype × diet p < 0.05). Treatment of L6-GLUT4-myc myocytes with palmitate lower β-catenin protein expression by 75% (p = 0.02), and attenuated insulin-stimulated β-catenin phosphorylationS552 and actin remodeling (interaction effect of insulin × palmitate p < 0.05). Finally, β-cateninS552 phosphorylation was 45% lower in muscle biopsies from men with type 2 diabetes while total β-catenin expression was unchanged. These findings suggest that β-catenin dysfunction is associated with the development of insulin resistance.Item Postexercise muscle glycogen synthesis with glucose, galactose, and combined galactose-glucose ingestion.(American Physiological Society, 2023-12-01) Podlogar T; Shad BJ; Seabright AP; Odell OJ; Lord SO; Civil R; Salgueiro RB; Shepherd EL; Lalor PF; Elhassan YS; Lai Y-C; Rowlands DS; Wallis GAIngested galactose can enhance postexercise liver glycogen repletion when combined with glucose but effects on muscle glycogen synthesis are unknown. In this double-blind randomized study participants [7 men and 2 women; V̇o2max: 51.1 (8.7) mL·kg-1·min-1] completed three trials of exhaustive cycling exercise followed by a 4-h recovery period, during which carbohydrates were ingested at the rate of 1.2 g·kg-1·h-1 comprising glucose (GLU), galactose (GAL) or galactose + glucose (GAL + GLU; 1:2 ratio). The increase in vastus lateralis skeletal-muscle glycogen concentration during recovery was higher with GLU relative to GAL + GLU [contrast: +50 mmol·(kg DM)-1; 95%CL 10, 89; P = 0.021] and GAL [+46 mmol·(kg DM)-1; 95%CL 8, 84; P = 0.024] with no difference between GAL + GLU and GAL [-3 mmol·(kg DM)-1; 95%CL -44, 37; P = 0.843]. Plasma glucose concentration in GLU was not significantly different vs. GAL + GLU (+ 0.41 mmol·L-1; 95%CL 0.13, 0.94) but was significantly lower than GAL (-0.75 mmol·L-1; 95%CL -1.34, -0.17) and also lower in GAL vs. GAL + GLU (-1.16 mmol·-1; 95%CL -1.80, -0.53). Plasma insulin was higher in GLU + GAL and GLU compared with GAL but not different between GLU + GAL and GLU. Plasma galactose concentration was higher in GAL compared with GLU (3.35 mmol·L-1; 95%CL 3.07, 3.63) and GAL + GLU (3.22 mmol·L-1; 95%CL 3.54, 2.90) with no difference between GLU + GAL (0.13 mmol·L-1; 95%CL -0.11, 0.37) and GLU. Compared with galactose or a galactose + glucose blend, glucose feeding was more effective in postexercise muscle glycogen synthesis. Comparable muscle glycogen synthesis was observed with galactose-glucose coingestion and exclusive galactose-only ingestion. NEW & NOTEWORTHY Postexercise galactose-glucose coingestion or exclusive galactose-only ingestion resulted in a lower rate of skeletal-muscle glycogen replenishment compared with exclusive glucose-only ingestion. Comparable muscle glycogen synthesis was observed with galactose-glucose coingestion and exclusive galactose-only ingestion.Item A higher-protein nut-based snack product suppresses glycaemia and decreases glycaemic response to co-ingested carbohydrate in an overweight prediabetic Asian Chinese cohort: the Tū Ora postprandial RCT(Cambridge University Press on behalf of The Nutrition Society, 2021-04-23) Lu LW; Silvestre MP; Sequeira IR; Plank LD; Foster M; Middleditch N; Acevedo-Fani A; Hollingsworth KG; Poppitt SDNut-based products may aid low-glycaemic dietary strategies that are important for diabetes prevention in populations at increased risk of dysglycaemia, such as Asian Chinese. This randomised cross-over trial assessed the postprandial glycaemic response (0-120 min) of a higher-protein nut-based (HP-NB) snack formulation, in bar format (1009 kJ, Nutrient Profiling Score, NPS, -2), when compared with an iso-energetic higher-carbohydrate (CHO) cereal-based bar (HC-CB, 985 kJ, NPS +3). It also assessed the ability to suppress glucose response to a typical CHO-rich food (white bread, WB), when co-ingested. Ten overweight prediabetic Chinese adults (mean, sd: age 47⋅9, 15⋅7 years; BMI 25⋅5, 1⋅6 kg/m2), with total body fat plus ectopic pancreas and liver fat quantified using dual-energy X-ray absorptiometry and magnetic resonance imaging and spectroscopy, received the five meal treatments in random order: HP-NB, HC-CB, HP-NB + WB (50 g available CHO), HC-CB + WB and WB only. Compared with HC-CB, HP-NB induced a significantly lower 30-120 min glucose response (P < 0⋅05), with an approximately 10-fold lower incremental area under the glucose curve (iAUC0-120; P < 0⋅001). HP-NB also attenuated glucose response by approximately 25 % when co-ingested with WB (P < 0⋅05). Half of the cohort had elevated pancreas and/or liver fat, with 13-21 % greater suppression of iAUC0-120 glucose in the low v. high organ fat subgroups across all five treatments. A nut-based snack product may be a healthier alternative to an energy equivalent cereal-based product with evidence of both a lower postprandial glycaemic response and modulation of CHO-induced hyperglycaemia even in high-risk, overweight, pre-diabetic adults.Item Influence of age and dietary cellulose levels on ileal endogenous energy losses in broiler chickens(Elsevier Inc. on behalf of Poultry Science Association Inc., 2022-07) Khalil MM; Abdollahi MR; Zaefarian F; Chrystal PV; Ravindran VTwo experiments were conducted to investigate the influence of age and dietary cellulose levels on the ileal endogenous energy losses (IEEL) in broiler chickens. In experiment 1, a glucose-based purified diet was used to determine the IEEL. Titanium dioxide (5.0 g/kg) was added to the diet as an indigestible marker. Six groups of broiler chickens aged 1 to 7, 8 to 14, 15 to 21, 22 to 28, 29 to 35 or 36 to 42 d posthatch, were utilized. With the exception of 1-7 d, the birds were fed a starter (d 1–21) and/or a finisher (d 22–35) diet before the experimental diet was introduced. The diet was randomly allocated to 6 replicate cages, and the number of birds per cage was 12 (d 1–7), 10 (d 8–14), and 8 (d 15–42). The ileal digesta were collected at the last day of each week (d 7, 14, 21, 28, 35, and 42). Bird age had no effect (P > 0.05) on the IEEL estimates. The IEEL estimates ranged from 263 to 316 kcal/kg dry matter intake (DMI) during weeks 1 to 6. In Experiment 2, 4 glucose-based purified diets were developed using 0, 25, 50 and 75 g/kg cellulose. Titanium dioxide (5.0 g/kg) was added to the diets as an indigestible marker. The diets were randomly allocated to 6 replicate cages (8 birds per cage) and fed from 18 to 21 d posthatch and, ileal digesta were collected on d 21. The IEEL estimates of broiler chickens at 21 d of age showed a quadratic response (P < 0.05) to increasing cellulose contents. The lowest IEEL (88 kcal/kg DMI) was recorded for the diet without cellulose and the highest IEEL (430 kcal/kg DMI) was observed for the diet with 75 g/kg cellulose. Overall, the present findings confirmed that the IEEL in broiler chickens can be quantified by feeding a glucose-based purified diet. Broiler age had no influence on the IEEL estimates. The IEEL increased with increasing dietary cellulose contents and the IEEL determined using a purified diet without cellulose represents a better estimate of IEEL.Item Comparative Effects of Co-Ingesting Whey Protein and Glucose Alone and Combined on Blood Glucose, Plasma Insulin and Glucagon Concentrations in Younger and Older Men(MDPI (Basel, Switzerland), 2022-08) Oberoi A; Giezenaar C; Rigda RS; Lange K; Horowitz M; Jones KL; Chapman I; Soenen S; Gropper SThe ingestion of dietary protein with, or before, carbohydrate may be a useful strategy to reduce postprandial hyperglycemia, but its effect in older people, who have an increased predisposition for type 2 diabetes, has not been clarified. Blood glucose, plasma insulin and glucagon concentrations were measured for 180 min following a drink containing either glucose (120 kcal), whey-protein (120 kcal), whey-protein plus glucose (240 kcal) or control (~2 kcal) in healthy younger (n = 10, 29 ± 2 years; 26.1 ± 0.4 kg/m2) and older men (n = 10, 78 ± 2 years; 27.3 ± 1.4 kg/m2). Mixed model analysis was used. In both age groups the co-ingestion of protein with glucose (i) markedly reduced the increase in blood glucose concentrations following glucose ingestion alone (p < 0.001) and (ii) had a synergistic effect on the increase in insulin concentrations (p = 0.002). Peak insulin concentrations after protein were unaffected by ageing, whereas insulin levels after glucose were lower in older than younger men (p < 0.05) and peak insulin concentrations were higher after glucose than protein in younger (p < 0.001) but not older men. Glucagon concentrations were unaffected by age. We conclude that the ability of whey-protein to reduce carbohydrate-induced postprandial hyperglycemia is retained in older men and that protein supplementation may be a useful strategy in the prevention and management of type 2 diabetes in older people.Item Acute effects of whey protein, alone and mixed with other macronutrients, on blood pressure and heart rate in older men(BioMed Central Ltd, 2022-12) Oberoi A; Giezenaar C; Lange K; Jones KL; Horowitz M; Chapman I; Soenen SBACKGROUND: Caloric supplements are increasingly used by older people, aiming to increase their daily protein intake. These high caloric drinks, rich in glucose and whey-protein in particular, may result in potential harmful decreases in blood pressure (BP). The effect of ingesting whey-protein with glucose and fat on BP is unknown. It has also been assumed that the maximum fall in systolic blood pressure occurs within 2 h of a meal. METHODS: This study aimed to determine in older men, the effects of whey-protein, alone and mixed with other macronutrients, on systolic (SBP) and diastolic (DBP) blood pressure and heart rate (HR) in older men for 3 h. Thirteen older men (age 75 ± 2yrs; body mass index (BMI) 25.6 ± 0.6 kg/m2) ingested a drink on separate study days: (i) 70 g whey-protein (P280); (ii) 14 g whey-protein, 28 g carbohydrate, 12.4 g fat (M280); (iii) 70 g whey-protein, 28 g carbohydrate, 12.4 g fat (M504); or (iv) a non-caloric control drink (C). RESULTS: SBP decreased after all three nutrient drinks compared to the C, with the greatest reduction after the M504 drink (P = 0.008). Maximal decreases in SBP (C: -14 ± 2 mmHg, P280: -22 ± 2 mmHg, M280: -22 ± 4 mmHg, M504: -24 ± 3 mmHg) occurred about 2 h after drink ingestion and this fall was sustained thereafter (120-180 min: P280 and M504 vs. C P < 0.05). Maximum DBP decreases and HR increases occurred after M504, with no differences between the effects of the P280 and M280 drinks. CONCLUSIONS: The effects of whey-protein containing drinks to lower BP and increase HR appear to be primarily dependent on their energy content rather than macronutrient composition and may persist for at least 3 h after ingestion,. Pure whey-protein drinks may represent the best approach to maximize protein intake without increasing the potential for deleterious BP falls in older people. TRIAL REGISTRATION: ACTRN12614000846628 , 14/03/2019.
