Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Genomic selection shows improved expected genetic gain over phenotypic selection of agronomic traits in allotetraploid white clover.
    (Springer Nature, 2025-01-23) Ehoche OG; Arojju SK; Jahufer MZZ; Jauregui R; Larking AC; Cousins G; Tate JA; Lockhart PJ; Griffiths AG
    Genomic selection using white clover multi-year-multi-site data showed predicted genetic gains through integrating among-half-sibling-family phenotypic selection and within-family genomic selection were up to 89% greater than half-sibling-family phenotypic selection alone. Genomic selection, an effective breeding tool used widely in plants and animals for improving low-heritability traits, has only recently been applied to forages. We explored the feasibility of implementing genomic selection in white clover (Trifolium repens L.), a key forage legume which has shown limited genetic improvement in dry matter yield (DMY) and persistence traits. We used data from a training population comprising 200 half-sibling (HS) families evaluated in a cattle-grazed field trial across three years and two locations. Combining phenotype and genotyping-by-sequencing (GBS) data, we assessed different two-stage genomic prediction models, including KGD-GBLUP developed for low-depth GBS data, on DMY, growth score, leaf size and stolon traits. Predictive abilities were similar among the models, ranging from -0.17 to 0.44 across traits, and remained stable for most traits when reducing model input to 100-120 HS families and 5500 markers, suggesting genomic selection is viable with fewer resources. Incorporating a correlated trait with a primary trait in multi-trait prediction models increased predictive ability by 28-124%. Deterministic modelling showed integrating among-HS-family phenotypic selection and within-family genomic selection at different selection pressures estimated up to 89% DMY genetic gain compared to phenotypic selection alone, despite a modest predictive ability of 0.3. This study demonstrates the potential benefits of combining genomic and phenotypic selection to boost genetic gains in white clover. Using cost-effective GBS paired with a prediction model optimized for low read-depth data, the approach can achieve prediction accuracies comparable to traditional models, providing a viable path for implementing genomic selection in white clover.
  • Item
    XSim version 2: simulation of modern breeding programs
    (Oxford University Press on behalf of Genetics Society of America, 2022-04-04) Chen CJ; Garrick D; Fernando R; Karaman E; Stricker C; Keehan M; Cheng H; de Koning D-J
    Simulation can be an efficient approach to design, evaluate, and optimize breeding programs. In the era of modern agriculture, breeding programs can benefit from a simulator that integrates various sources of big data and accommodates state-of-the-art statistical models. The initial release of XSim, in which stochastic descendants can be efficiently simulated with a drop-down strategy, has mainly been used to validate genomic selection results. In this article, we present XSim Version 2 that is an open-source tool and has been extensively redesigned with additional features to meet the needs in modern breeding programs. It seamlessly incorporates multiple statistical models for genetic evaluations, such as GBLUP, Bayesian alphabets, and neural networks, and it can effortlessly simulate successive generations of descendants based on complex mating schemes by the aid of its modular design. Case studies are presented to demonstrate the flexibility of XSim Version 2 in simulating crossbreeding in animal and plant populations. Modern biotechnology, including double haploids and embryo transfer, can all be simultaneously integrated into the mating plans that drive the simulation. From a computing perspective, XSim Version 2 is implemented in Julia, which is a computer language that retains the readability of scripting languages (e.g. R and Python) without sacrificing much computational speed compared to compiled languages (e.g. C). This makes XSim Version 2 a simulation tool that is relatively easy for both champions and community members to maintain, modify, or extend in order to improve their breeding programs. Functions and operators are overloaded for a better user interface so they may concatenate, subset, summarize, and organize simulated populations at each breeding step. With the strong and foreseeable demands in the community, XSim Version 2 will serve as a modern simulator bridging the gaps between theories and experiments with its flexibility, extensibility, and friendly interface.
  • Item
    A multi-objective genetic algorithm to find active modules in multiplex biological networks
    (PLOS, 2021-08-30) Novoa-Del-Toro EM; Mezura-Montes E; Vignes M; Térézol M; Magdinier F; Tichit L; Baudot A; Jensen P
    The identification of subnetworks of interest-or active modules-by integrating biological networks with molecular profiles is a key resource to inform on the processes perturbed in different cellular conditions. We here propose MOGAMUN, a Multi-Objective Genetic Algorithm to identify active modules in MUltiplex biological Networks. MOGAMUN optimizes both the density of interactions and the scores of the nodes (e.g., their differential expression). We compare MOGAMUN with state-of-the-art methods, representative of different algorithms dedicated to the identification of active modules in single networks. MOGAMUN identifies dense and high-scoring modules that are also easier to interpret. In addition, to our knowledge, MOGAMUN is the first method able to use multiplex networks. Multiplex networks are composed of different layers of physical and functional relationships between genes and proteins. Each layer is associated to its own meaning, topology, and biases; the multiplex framework allows exploiting this diversity of biological networks. We applied MOGAMUN to identify cellular processes perturbed in Facio-Scapulo-Humeral muscular Dystrophy, by integrating RNA-seq expression data with a multiplex biological network. We identified different active modules of interest, thereby providing new angles for investigating the pathomechanisms of this disease.
  • Item
    Comparison of linkage disequilibrium estimated from genotypes versus haplotypes for crossbred populations
    (BioMed Central Ltd, 2022-02-08) Alemu SW; Bijma P; Calus MPL; Liu H; Fernando RL; Dekkers JCM
    Background Linkage disequilibrium (LD) is commonly measured based on the squared coefficient of correlation (r²) between the alleles at two loci that are carried by haplotypes. LD can also be estimated as the r² between unphased genotype dosage at two loci when the allele frequencies and inbreeding coefficients at both loci are identical for the parental lines. Here, we investigated whether r² for a crossbred population (F1) can be estimated using genotype data. The parental lines of the crossbred (F1) can be purebred or crossbred. Methods We approached this by first showing that inbreeding coefficients for an F1 crossbred population are negative, and typically differ in size between loci. Then, we proved that the expected r² computed from unphased genotype data is expected to be identical to the r² computed from haplotype data for an F1 crossbred population, regardless of the inbreeding coefficients at the two loci. Finally, we investigated the bias and precision of the r² estimated using unphased genotype versus haplotype data in stochastic simulation. Results Our findings show that estimates of r² based on haplotype and unphased genotype data are both unbiased for different combinations of allele frequencies, sample sizes (900, 1800, and 2700), and levels of LD. In general, for any allele frequency combination and r² value scenarios considered, and for both methods to estimate r², the precision of the estimates increased, and the bias of the estimates decreased as sample size increased, indicating that both estimators are consistent. For a given scenario, the r² estimates using haplotype data were more precise and less biased using haplotype data than using unphased genotype data. As sample size increased, the difference in precision and biasedness between the r² estimates using haplotype data and unphased genotype data decreased. Conclusions Our theoretical derivations showed that estimates of LD between loci based on unphased genotypes and haplotypes in F1 crossbreds have identical expectations. Based on our simulation results, we conclude that the LD for an F1 crossbred population can be accurately estimated from unphased genotype data. The results also apply for other crosses (F2, F3, Fn, BC1, BC2, and BCn), as long as (selected) individuals from the two parental lines mate randomly.