Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
3 results
Search Results
Item Effects of microwave, ultrasound, and high-pressure homogenization on the physicochemical properties of sugarcane fibre and its application in white bread(Elsevier Ltd., 2023-07-15) Abdol Rahim Yassin Z; Binte Abdul Halim FN; Taheri A; Goh KKT; Du JSugarcane fibre (SCF) is known as an insoluble dietary fibre and a by-product from sugar manufacturing industry. The physicochemical and structural properties of SCF were modified using microwave irradiation at 5% and 10% SCF for 5 and 10 min (MW5%,15m, MW10%,5m, MW10%,15m), ultrasound at 30% amplitude, 7% SCF, for 1.5 h or 3 h (US1h, US2h), and high-pressure homogenization at 1% SCF, 2000 bar for 1 and 2 passes (HPH1p, HPH2p). Different types of disruption on the morphology of SCF were observed with different physical treatments confirmed by scanning electron microscopy. HPH2p treated SCF exhibited the largest particle size, and highest water and oil-holding capacities. Fourier-transform infrared spectroscopy results showed that all physical treatments were able to reduce hemicellulose and enhance cellulose content in SCFs, especially for HPH treatments. After making dough and bread with treated and untreated SCF, HPH2p SCF incorporated bread had the firmest texture, followed by MW10%,15m, while these two samples have the lowest specific volume. The maximum height of bread was significantly lower in breads incorporated with HPH2p, US1.5h and US3h. Subsequently, glycemic response decreased in all SCF-incorporated breads compared to white bread reference.Item Recent advances in encapsulation techniques for cinnamon bioactive compounds: A review on stability, effectiveness, and potential applications(Elsevier Ltd, 2024-02) Culas MS; Popovich DG; Rashidinejad ACinnamon is renowned worldwide for its beneficial health-promoting properties. However, its application in the food industry faces significant challenges due to chemical instability, leading to the degradation of its bioactive compounds, as well as the development of undesirable sensory characteristics caused by the precipitation of salivary proteins by the bioactives. To address these issues, encapsulation methods (both micro and nano) have been developed and studied extensively. This review focuses on recent advances in such encapsulation techniques used to safeguard and deliver cinnamon bioactives, with special emphasis on the spray drying method. The methods employed to evaluate the physicochemical, rheological, and sensorial properties of nano and microparticles are also comprehensively reviewed. The review addresses the challenges associated with encapsulation, including encapsulation efficiency, long-term stability, and release kinetics, and proposes potential strategies to overcome these challenges. Furthermore, the paper presents future perspectives and research directions in cinnamon encapsulation, shedding light on novel materials, advanced characterization techniques, and hybrid encapsulation systems. Overall, encapsulation demonstrates the potential to preserve and harness the therapeutic benefits of cinnamon's bioactive compounds for a wide array of food, pharmaceutical, and nutraceutical applications. With ongoing research and advancements in encapsulation techniques, cinnamon bioactives can be effectively utilized to develop functional and health-enhancing products, catering to the diverse needs of consumers worldwide.Item Impacts of sonication and high hydrostatic pressure on the structural and physicochemical properties of quinoa protein isolate dispersions at acidic, neutral and alkaline pHs(Elsevier BV, 2022-12) Luo L; Yang Z; Wang H; Muthupandian A; Hemar YHerein, 1 wt% quinoa protein isolate (QPI) was exposed to sonication using a 20 kHz ultrasonicator equipped with a 6 mm horn (14.4 W, 10 mL, up to 15 min) or high hydrostatic pressure (HHP, up to 600 MPa, 15 min) treatments at pH 5, pH 7, and pH 9. The changes to physicochemical properties were probed by SDS-PAGE, FTIR, free sulfhydryl group (SH), surface hydrophobicity (H0), particle size and solubility. As revealed by SDS-PAGE, substantial amounts of 11S globulin participated in the formations of aggregates via Ssingle bondS bond under HHP, particularly at pH 7 and pH 9. However, protein profiles of QPI were not significantly affected by the sonication. Free SH groups and surface hydrophobicity were increased after the sonication treatment indicating protein unfolding and exposure of the embedded SH and/or hydrophobic groups. An opposite trend was observed in HHP treated samples, implying aggregation and reassociation of structures under HHP. HHP and sonication treatments induced a decrease in ordered secondary structures (random coil and β-turn) accompanied with an increase in disordered secondary structures (α-helix and β-sheet) as probed by FTIR. Finally, the sonication treatment induced a significant improvement in the solubility (up to ∼3 folds at pH 7 and ∼2.6 folds at pH 9) and a reduction in particle sizes (up to ∼3 folds at pH 7 and ∼4.4 folds at pH 9). However, HHP treatment (600 MPa) only slightly increased the solubility (∼1.6 folds at pH 7 and ∼1.2 folds at pH 9) and decreased the particle size (∼1.3 folds at pH 7 and ∼1.2 folds at pH 9). This study provides a direct comparison of the impacts of sonication and HHP treatment on QPI, which will enable to choose the appropriate processing methods to achieve tailored properties of QPI.
