Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Modelling and mapping of subsurface nitrate-attenuation index in agricultural landscapes
    (Elsevier Ltd, 2025-06) Collins SB; Singh R; Mead SR; Horne DJ; Zhang L
    Environmental management of nutrient losses from agricultural lands is required to reduce their potential impacts on the quality of groundwater and eutrophication of surface waters in agricultural landscapes. However, accurate accounting and management of nitrogen losses relies on a robust modelling of nitrogen leaching and its potential attenuation – specifically, the reduction of nitrate to gaseous forms of nitrogen – in subsurface flow pathways. Subsurface denitrification is a key process in potential nitrate attenuation, but the spatial and temporal dynamics of where and when it occurs remain poorly understood, especially at catchment-scale. In this paper, a novel Landscape Subsurface Nitrate-Attenuation Index (LSNAI) is developed to map spatially variable subsurface nitrate attenuation potential of diverse landscape units across the Manawatū-Whanganui region of New Zealand. A large data set of groundwater quality across New Zealand was collated and analysed to assess spatial and temporal variability of groundwater redox status (based on dissolved oxygen, nitrate and dissolved manganese) across different hydrogeological settings. The Extreme Gradient Boosting algorithm was used to predict landscape unit subsurface redox status by integrating the nationwide groundwater redox status data set with various landscape characteristics. Applying the hierarchical clustering analysis and unsupervised classification techniques, the LSNAI was then developed to identify and map five landscape subsurface nitrate attenuation classes, varying from very low to very high potential, based on the predicted groundwater redox status probabilities and identified soil drainage and rock type as key influencing landscape characteristics. Accuracy of the LSNAI mapping was further investigated and validated using a set of independent observations of groundwater quality and redox assessments in shallow groundwaters in the study area. This highlights the potential for further research in up-scaling mapping and modelling of landscape subsurface nitrate attenuation index to accurately account for spatial variability in subsurface nitrate attenuation potential in modelling and assessment of water quality management measures at catchment-scale in agricultural landscapes.
  • Item
    Quantification of denitrification rate in shallow groundwater using the single-well, push-pull test technique
    (Elsevier BV, Amsterdam, 2025-02) Rivas A; Singh R; Horne D; Roygard J; Matthews A; Hedley M
    Denitrification has been identified as a significant nitrate attenuation process in groundwater systems. Hence, accurate quantification of denitrification rates is consequently important for the better understanding and assessment of nitrate contamination of groundwater systems. There are, however, few studies that have investigated quantification of shallow groundwater denitrification rates using different analytical approaches or assuming different kinetic reaction models. In this study, we assessed different analytical approaches (reactant versus product) and kinetic reaction (zero-order and first-order) models analysing observations from a single-well, push-pull tests to quantify denitrification rates in shallow groundwater at two sites in the Manawatū River catchment, Lower North Island of New Zealand. Shallow groundwater denitrification rates analysed using the measurements of denitrification reactant (nitrate reduction) and zero-order kinetic models were quantified at 0.42-1.07 mg N L-1 h-1 and 0.05-0.12 mg N L-1 h-1 at the Palmerston North (PNR) and Woodville (WDV) sites, respectively. However, using first-order kinetic models, the denitrification rates were quantified at 0.03-0.09 h-1 and 0.002-0.012 h-1 at the PNR and WDV sites, respectively. These denitrification rates based on the measurements of denitrification reactant (nitrate reduction) were quantified significantly higher (6 to 60 times) than the rates estimated using the measurements of denitrification product (nitrous oxide production). However, the denitrification rate quantified based on the nitrate reduction may provide representative value of denitrification characteristics of shallow groundwater systems. This is more so when lacking practical methods to quantify all nitrogen species (i.e., total N, organic N, nitrite, nitrate, ammoniacal N, nitrous oxide, nitric oxide, and nitrogen gas) in a push-pull test. While estimates of denitrification rates also differed depending on the kinetic model used, both a zero-order and a first-order model appear to be valid to analyse and estimate denitrification rate from push-pull tests. However, a discrepancy in estimates of denitrification rates using either reactant or product and using zero- or first-order kinetics models may have implications in assessment of nitrate transport and transformation in groundwater systems. This necessitates further research and analysis for appropriate measurements and representation of spatial and temporal variability in denitrification characteristics of the shallow groundwater system.
  • Item
    Nitrate enrichment does not affect enteropathogenic Escherichia coli in aquatic microcosms but may affect other strains present in aquatic habitats
    (PeerJ, Inc, 2022-09-27) Davis MT; Canning AD; Midwinter AC; Death RG; Oehlmann J
    Eutrophication of the planet's aquatic systems is increasing at an unprecedented rate. In freshwater systems, nitrate-one of the nutrients responsible for eutrophication-is linked to biodiversity losses and ecosystem degradation. One of the main sources of freshwater nitrate pollution in New Zealand is agriculture. New Zealand's pastoral farming system relies heavily on the application of chemical fertilisers. These fertilisers in combination with animal urine, also high in nitrogen, result in high rates of nitrogen leaching into adjacent aquatic systems. In addition to nitrogen, livestock waste commonly carries human and animal enteropathogenic bacteria, many of which can survive in freshwater environments. Two strains of enteropathogenic bacteria found in New Zealand cattle, are K99 and Shiga-toxin producing Escherichia coli (STEC). To better understand the effects of ambient nitrate concentrations in the water column on environmental enteropathogenic bacteria survival, a microcosm experiment with three nitrate-nitrogen concentrations (0, 1, and 3 mg NO3-N /L), two enteropathogenic bacterial strains (STEC O26-human, and K99-animal), and two water types (sterile and containing natural microbiota) was run. Both STEC O26 and K99 reached 500 CFU/10 ml in both water types at all three nitrate concentrations within 24 hours and remained at those levels for the full 91 days of the experiment. Although enteropathogenic strains showed no response to water column nitrate concentrations, the survival of background Escherichia coli, imported as part of the in-stream microbiota did, surviving longer in 1 and 3 mg NO3-N/Lconcentrations (P < 0.001). While further work is needed to fully understand how nitrate enrichment and in-stream microbiota may affect the viability of human and animal pathogens in freshwater systems, it is clear that these two New Zealand strains of STEC O26 and K99 can persist in river water for extended periods alongside some natural microbiota.
  • Item
    Detecting genes associated with antimicrobial resistance and pathogen virulence in three New Zealand rivers
    (PeerJ, Inc, 2021-12-03) Davis M; Midwinter AC; Cosgrove R; Death RG; Oehlmann J
    The emergence of clinically significant antimicrobial resistance (AMR) in bacteria is frequently attributed to the use of antimicrobials in humans and livestock and is often found concurrently with human and animal pathogens. However, the incidence and natural drivers of antimicrobial resistance and pathogenic virulence in the environment, including waterways and ground water, are poorly understood. Freshwater monitoring for microbial pollution relies on culturing bacterial species indicative of faecal pollution, but detection of genes linked to antimicrobial resistance and/or those linked to virulence is a potentially superior alternative. We collected water and sediment samples in the autumn and spring from three rivers in Canterbury, New Zealand; sites were above and below reaches draining intensive dairy farming. Samples were tested for loci associated with the AMR-related group 1 CTX-M enzyme production (bla CTX-M) and Shiga toxin producing Escherichia coli (STEC). The bla CTX-M locus was only detected during spring and was more prevalent downstream of intensive dairy farms. Loci associated with STEC were detected in both the autumn and spring, again predominantly downstream of intensive dairying. This cross-sectional study suggests that targeted testing of environmental DNA is a useful tool for monitoring waterways. Further studies are now needed to extend our observations across seasons and to examine the relationship between the presence of these genetic elements and the incidence of disease in humans.