Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
2 results
Search Results
Item Characterisation of New Zealand Propolis from Different Regions Based on Its Volatile Organic Compounds(MDPI (Basel, Switzerland), 2024-07-02) Mountford-McAuley R; Robertson A; Taylor M; Clavijo McCormick A; Falcão SIPropolis is a bee product mainly consisting of plant resins and is used by bees to maintain the structural integrity of the colony. Propolis is known to contribute to bee health via its antimicrobial activity and is a valued product for human use owing to its nutritional and medicinal properties. Propolis is often characterised into seven categories depending on the resin source. New Zealand propolis is typically assumed as being poplar-type propolis, but few studies have chemically characterised New Zealand propolis to confirm or reject this assumption. Here, for the first time, we characterise propolis originating from different regions in New Zealand based on its volatile organic compounds, using gas chromatography coupled with mass spectrometry (GC-MS). To support this characterisation, we also collected and analysed resin samples from a variety of resin-producing plants (both native to New Zealand and introduced). Our findings suggest that bees mainly use poplar as a resin source, but also utilize native plant species to produce propolis. While regional variation did not allow for clear separation between samples, some patterns emerged, with samples from some regions having more chemical complexity and a higher contribution from native species (as suggested by a higher number of compounds unique to native species resin). Further studies are needed to accurately identify the botanical sources contributing to these samples. It may be also of interest to explore the biological activity of regional propolis samples and their potential nutritional or medicinal benefits.Item Biochar increases soil enzyme activities in two contrasting pastoral soils under different grazing management(CSIRO Publishing, 2022-12) Garbuz S; Mackay A; Camps-Arbestain M; Devantier B; Minor M; Solaiman ZContext: Soil enzyme activities are key regulators of carbon and nutrient cycling in grazed pastures. Aims: We investigated the effect of biochar addition on the activity of seven enzymes involved in the carbon, nitrogen and phosphorus cycles in a Sil-Andic Andosol and a Dystric Cambisol under permanent pastures. Methods: The study consisted of a one-year field-based mesocosm experiment involving four pastures under different nutrient and livestock practices: with and without effluent under dairy cow grazing on the Andosol, and with either nil or high phosphorus fertiliser input under sheep grazing on the Cambisol. Soil treatments were: (1) willow biochar added at 1% w/w; (2) lime added at the liming equivalence of biochar (positive control); (3) no amendments (negative control). Key results: Compared with the Cambisol, the Andosol had higher dehydrogenase, urease, alkaline and acid phosphatase and, especially, nitrate-reductase activities, aligning with its higher pH and fertility. In both soils, biochar addition increased the activity of all enzymes, except for acid phosphatase and peroxidase; lime addition increased peroxidase and nitrate-reductase activity. Conclusions: The increased enzyme activity was strongly positively correlated with soil biological activity following biochar addition. Biochar caused a 40-45% increase in cellulase activity, attributed to increased root biomass following biochar addition. The response in acid and alkaline phosphatase activity can be attributed to the impact of biochar and lime addition on soil pH. Implications: The results provide more insights in realising the potential benefits of biochar to the provision of ecosystem services for grazed pastures.
