Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
4 results
Search Results
Item Papillomaviruses and Papillomaviral Disease in Dogs and Cats: A Comprehensive Review.(MDPI (Basel, Switzerland), 2024-12-01) Munday JS; Knight CG; Materniak-Kornas M; Rola-Łuszczak M; Woźniakowski GPapillomaviruses (PVs) frequently infect humans as well as non-human species. While most PV infections are asymptomatic, PVs can also cause hyperplastic papillomas (warts) as well as pre-neoplastic and neoplastic lesions. In this review, the life cycle of PVs is discussed, along with the mechanisms by which PVs cause hyperplastic and neoplastic diseases. The humoral and cell-mediated immune responses to PVs are reviewed, giving context to the later discussion on the use of vaccines to reduce canine and feline PV-associated disease. Both dogs and cats are infected by numerous different PV types classified into multiple different PV genera. The taxonomic classification of PVs is reviewed, along with the significance of this classification. The PV-associated diseases of dogs and cats are then described. These descriptions include the clinical presentation of the disease, the causative PV types, the histological features that allow diagnosis, and, where appropriate, possible treatment options. The review is comprehensive and contains the latest information about PVs and the diseases they cause in dogs and cats.Item Canis Familiaris Papillomavirus Type 26: A Novel Papillomavirus of Dogs and the First Canine Papillomavirus within the Omegapapillomavirus Genus.(MDPI (Basel, Switzerland), 2024-04-12) Munday JS; Bond SD; Piripi S; Soulsby SJ; Knox MA; Christensen NDomestic dogs are currently recognized as being infected by 25 different canine papillomavirus (CPV) types classified into three genera. A short sequence from a novel CPV type was amplified, along with CPV1, from a papilloma (wart) from the mouth of a dog. The entire 7499 bp genome was amplified, and CPV26 contained putative coding regions that were predicted to produce four early proteins and two late ones. The ORF L1 showed less than 62% similarity for all previously sequenced CPV types but over 69% similarity to multiple Omegapapillomavirus types from a variety of Caniform species including the giant panda, Weddel seal, and polar bear. Phylogenetic analysis confirmed CPV26 clusters within the Omegapapillomavirus genus. Specific primers were used to investigate the presence of CPV26 DNA within a series of 37 canine proliferative lesions. CPV26 DNA was amplified from one lesion, a cutaneous papilloma that also contained CPV6. This is the first time a PV type within the Omegapapillomavirus genus has been detected in a non-domestic species and this provides evidence that the omegapapillomaviruses infected a common ancestor of, and then co-evolved with, the Caniform species. Whether CPV26 causes disease is uncertain, but the absence of an E7 protein may suggest low pathogenicity.Item Detection of a novel papillomaviral sequence in viral plaques confined to the pinna of a dog.(John Wiley and Sons, Inc., 2023-08-01) Munday JS; Orbell G; Robinson LA raised plaque that contained histological evidence of papillomavirus infection and sequences from a novel papillomavirus type developed close to the ear canal of a 14-year-old West Highland white terrier. The plaque was excised, and further plaques developed within the same area of pinna.Item Genomic Characterization of Canis Familiaris Papillomavirus Type 25, a Novel Papillomavirus Associated with a Viral Plaque from the Pinna of a Dog(MDPI (Basel, Switzerland), 2023-06-02) Munday JS; Gedye K; Knox MA; Robinson L; Lin XA 14-year-old West Highland White terrier dog developed multiple raised plaques that were confined to the concave surface of the right pinna. Histology allowed a diagnosis of viral plaque, although the lesions contained some unusual microscopic features. A papillomaviral (PV) DNA sequence was amplified from the plaque using consensus PCR primers. The amplified sequence was used as a template to design 'outward facing' PCR primers, which allowed amplification of the complete PV DNA sequence. The sequence was 7778 bp and was predicted to code for five early genes and two late genes. The ORF L1 showed the highest (83.9%) similarity to CPV15, and phylogenetic analysis revealed the novel PV clustered with the species 3 ChiPVs. The novel PV was designated as canine papillomavirus (CPV) type 25. As CPV25 was not previously detected in a canine viral plaque, this PV type may be a rare cause of skin disease in dogs. However, as plaques that remain confined to the pinna were not previously reported in dogs, it is possible that CPV25 could be more common in plaques from this area of skin. The findings from this case expand the number of PV types that cause disease in dogs. Evidence from this case suggests that, compared to the other canine ChiPV types, infection by CPV25 results in viral plaques in atypical locations with unusual histological features.
