Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
2 results
Search Results
Item β-Casein A1 and A2: Effects of polymorphism on the cheese-making process(Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association, 2023-08) Vigolo V; Visentin E; Ballancin E; Lopez-Villalobos N; Penasa M; De Marchi MOf late, "A2 milk" has gained prominence in the dairy sector due to its potential implications in human health. Consequently, the frequency of A2 homozygous animals has considerably increased in many countries. To elucidate the potential implications that beta casein (β-CN) A1 and A2 may have on cheese-making traits, it is fundamental to investigate the relationships between the genetic polymorphisms and cheese-making traits at the dairy plant level. Thus, the aim of the present study was to evaluate the relevance of the β-CN A1/A2 polymorphism on detailed protein profile and cheese-making process in bulk milk. Based on the β-CN genotype of individual cows, 5 milk pools diverging for presence of the 2 β-CN variants were obtained: (1) 100% A1; (2) 75% A1 and 25% A2; (3) 50% A1 and 50% A2; (4) 25% A1 and 75% A2; and (5) 100% A2. For each cheese-making day (n = 6), 25 L of milk (divided into 5 pools, 5 L each) were processed, for a total of 30 cheese-making processes. Cheese yield, curd nutrient recovery, whey composition, and cheese composition were assessed. For every cheese-making process, detailed milk protein fractions were determined through reversed-phase HPLC. Data were analyzed by fitting a mixed model, which included the fixed effects of the 5 different pools, the protein and fat content as a covariate, and the random effect of the cheese-making sessions. Results showed that the percentage of κ-CN significantly decreased up to 2% when the proportion of β-CN A2 in the pool was ≥25%. An increase in the relative content of β-CN A2 (≥50% of total milk processed) was also associated with a significantly lower cheese yield both 1 and 48 h after cheese production, whereas no effects were observed after 7 d of ripening. Concordantly, recovery of nutrients reflected a more efficient process when the inclusion of β-CN A2 was ≤75%. Finally, no differences in the final cheese composition obtained by the different β-CN pools were observed.Item Animal factors affecting the cheese-making properties and the heat coagulation time of milk from dairy sheep in a New Zealand flock(Taylor and Francis Group on behalf of the Royal Society of New Zealand, 2024-03-27) Marshall AC; Lopez-Villalobos N; Loveday SM; Weeks M; McNabb WThe objective of this study was to evaluate the effect of animal factors on the cheese-making properties and on the heat coagulation time of milk from individual dairy sheep in a New Zealand flock. A total of 521 individual records were obtained from a seasonal pasture-based flock of 169 ewes milked once-a-day, from 50 to 182 days in milk. A statistical model was used to quantify the effects of animal factors (coat colour variety, age, litter size and stage of lactation) on the studied traits. Stage of lactation, confounded with seasonality, strongly influenced all properties of milk investigated. With the advancement of lactation, the milk took longer to coagulate after rennet addition, and the curd was softer. Higher relative cheese yield was achieved towards the end of lactation. The milk was also less stable to high-temperature treatment in late lactation. Coefficient of variation for processability traits was high and ranged from 20.2% to 58%, which can be largely attributed to stage of lactation but could also indicate room for genetic improvement of traits. Further genetic studies are underway to define animal genetic variance, heritability, and the phenotypic and genetic correlations between these processability and milk composition traits.
