Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
Search Results
Item Pharmacokinetics and Pharmacodynamics of Butorphanol and Dexmedetomidine after Intranasal Administration in Broiler Chickens (Gallus gallus domesticus)(MDPI (Basel, Switzerland), 2022-04-25) Sha J; Kongara K; Singh P; Jacob A; Ponnampalam J; Guedes AButorphanol and dexmedetomidine (DXM) can produce analgesia in birds. Intranasal (IN) route of drug administration is easier, and free of risks such as pain and tissue damage compared with intravenous, intramuscular or subcutaneous routes in bird species, including wild birds. Although previous studies have demonstrated the use of IN route for producing sedation, no studies are available on the pharmacokinetics and pharmacodynamics of IN drugs in birds. This study analyzed the pharmacokinetics and sedative–analgesic efficacy of intranasal butorphanol (2 mg/kg), dexmedetomidine (80 µg/kg) and their combination (butorphanol, 2 mg/kg; DXM, 80 µg/kg) in healthy, male, Ross broiler chickens (n = 6/group) aged between 6 and 8 weeks. Maximum plasma concentration (Cmax, p = 0.01), area under the plasma concentration-time curve from time zero to 120 min (AUC0 to 120, p = 0.02) and apparent volume of distribution at steady state (Vss, p = 0.02) of DXM were significantly higher than that of DXM co-administered with butorphanol. The mechanical nociceptive thresholds and the sedation scores of DXM group were significantly higher than the baseline value. Dexmedetomidine (80 µg/kg, IN) was effective in chickens, and the drug absorption was more rapid than that of DXM with butorphanol. However, the duration of action of DXM was short. Lower value of Cmax and nociceptive thresholds showed the nonsignificant efficacy of butorphanol at a dose of 2 mg/kg after IN administration in broiler chickens.Item 3D Printing of Textured Soft Hybrid Meat Analogues(MDPI (Basel, Switzerland), 2022-02-06) Wang T; Kaur L; Furuhata Y; Aoyama H; Singh J; Mirade PSMeat analogue is a food product mainly made of plant proteins. It is considered to be a sustainable food and has gained a lot of interest in recent years. Hybrid meat is a next generation meat analogue prepared by the co-processing of both plant and animal protein ingredients at different ratios and is considered to be nutritionally superior to the currently available plant-only meat analogues. Three-dimensional (3D) printing technology is becoming increasingly popular in food processing. Three-dimensional food printing involves the modification of food structures, which leads to the creation of soft food. Currently, there is no available research on 3D printing of meat analogues. This study was carried out to create plant and animal protein-based formulations for 3D printing of hybrid meat analogues with soft textures. Pea protein isolate (PPI) and chicken mince were selected as the main plant protein and meat sources, respectively, for 3D printing tests. Then, rheology and forward extrusion tests were carried out on these selected samples to obtain a basic understanding of their potential printability. Afterwards, extrusion-based 3D printing was conducted to print a 3D chicken nugget shape. The addition of 20% chicken mince paste to PPI based paste achieved better printability and fibre structure.Item Effects of halothane on the electroencephalogram of the chicken(John Wiley and Sons, Ltd, 15/05/2018) McIlhone AE; Beausoleil NJ; Kells NJ; Johnson CB; Mellor DJLittle is known about the effects of inhalant anaesthetics on the avian electroencephalogram (EEG). The effects of halothane on the avian EEG are of interest, as this agent has been widely used to study nociception and analgesia in mammals. The objective of this study was to characterize the effects of halothane anaesthesia on the EEG of the chicken. Twelve female Hyline Brown chickens aged 8-10 weeks were anaesthetized with halothane in oxygen. For each bird, anaesthesia was progressively increased from 1-1.5 to 2 times the Minimum Anesthetic Concentration (MAC), then progressively decreased again. At each concentration, a sample of EEG was recorded after a 10-min stabilization period. The mean Total Power (PTOT ), Median Frequency (F50) and 95% Spectral Edge Frequency (F95) were calculated at each halothane MAC, along with the Burst Suppression Ratio (BSR). Burst suppression was rare and BSR did not differ between halothane concentrations. Increasing halothane concentration from 1 to 2 MAC resulted in a decrease in F50 and increase in PTOT , while F95 increased when MAC was reduced from 1.5 to 1. The results indicate dose-dependent spectral EEG changes consistent with deepening anaesthesia in response to increasing halothane MAC. As burst suppression was rare, even at 1.5 or 2 times MAC, halothane may be a suitable anaesthetic agent for use in future studies exploring EEG activity in anaesthetized birds.
