Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    A weight optimization-based transfer learning approach for plant disease detection of New Zealand vegetables
    (Frontiers Media, 25/10/2022) Saleem MH; Potgieter J; Arif K
    Deep learning (DL) is an effective approach to identifying plant diseases. Among several DL-based techniques, transfer learning (TL) produces significant results in terms of improved accuracy. However, the usefulness of TL has not yet been explored using weights optimized from agricultural datasets. Furthermore, the detection of plant diseases in different organs of various vegetables has not yet been performed using a trained/optimized DL model. Moreover, the presence/detection of multiple diseases in vegetable organs has not yet been investigated. To address these research gaps, a new dataset named NZDLPlantDisease-v2 has been collected for New Zealand vegetables. The dataset includes 28 healthy and defective organs of beans, broccoli, cabbage, cauliflower, kumara, peas, potato, and tomato. This paper presents a transfer learning method that optimizes weights obtained through agricultural datasets for better outcomes in plant disease identification. First, several DL architectures are compared to obtain the best-suited model, and then, data augmentation techniques are applied. The Faster Region-based Convolutional Neural Network (RCNN) Inception ResNet-v2 attained the highest mean average precision (mAP) compared to the other DL models including different versions of Faster RCNN, Single-Shot Multibox Detector (SSD), Region-based Fully Convolutional Networks (RFCN), RetinaNet, and EfficientDet. Next, weight optimization is performed on datasets including PlantVillage, NZDLPlantDisease-v1, and DeepWeeds using image resizers, interpolators, initializers, batch normalization, and DL optimizers. Updated/optimized weights are then used to retrain the Faster RCNN Inception ResNet-v2 model on the proposed dataset. Finally, the results are compared with the model trained/optimized using a large dataset, such as Common Objects in Context (COCO). The final mAP improves by 9.25% and is found to be 91.33%. Moreover, the robustness of the methodology is demonstrated by testing the final model on an external dataset and using the stratified k-fold cross-validation method.
  • Item
    A Performance-Optimized Deep Learning-based Plant Disease Detection Approach for Horticultural Crops of New Zealand
    (Institute of Electrical and Electronics Engineers, 23/08/2022) Saleem MH; Potgieter J; Arif K
    Deep learning-based plant disease detection has gained significant attention from the scientific community. However, various aspects of real horticultural conditions have not yet been explored. For example, the disease should be considered not only on leaves, but also on other parts of plants, including stems, canes, and fruits. Furthermore, the detection of multiple diseases in a single plant organ at a time has not been performed. Similarly, plant disease has not been identified in various crops in the complex horticultural environment with the same optimized/modified model. To address these research gaps, this research presents a dataset named NZDLPlantDisease-v1, consisting of diseases in five of the most important horticultural crops in New Zealand: kiwifruit, apple, pear, avocado, and grapevine. An optimized version of the best obtained deep learning (DL) model named region-based fully convolutional network (RFCN) has been proposed to detect plant disease using the newly generated dataset. After finding the most suitable DL model, the data augmentation techniques were successively evaluated. Subsequently, the effects of image resizers with interpolators, weight initializers, batch normalization, and DL optimizers were studied. Finally, performance was enhanced by empirical observation of position-sensitive score maps and anchor box specifications. Furthermore, the robustness/practicality of the proposed approach was demonstrated using a stratified k-fold cross-validation technique and testing on an external dataset. The final mean average precision of the RFCN model was found to be 93.80%, which was 19.33% better than the default settings. Therefore, this research could be a benchmark step for any follow-up research on automatic control of disease in several plant species.