Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Health impacts of poor water quality on an endangered shorebird breeding programme in Aotearoa New Zealand.
    (Taylor and Francis Group, 2024-02-04) Gartrell BD; Hunter S; Collen R; Jolly M; McInnes K; Richardson A; Reed C; Ward R; Pita A
    CASE HISTORY: Two clusters of mortality among endangered tūturuatu/tchūriwat'/shore plover (Thinornis novaeseelandiae) have occurred at captive breeding facilities around New Zealand in recent years. In the first, four chicks died at Pūkaha National Wildlife Centre (Mount Bruce, NZ) in February 2016, and in the second five adult birds at the Cape Sanctuary (Cape Kidnappers, NZ) died in 2022. CLINICAL FINDINGS: In 2016, four chicks were noted to become weak, have increased vocalisations and closed eyes prior to death. The remaining chicks were treated for 5 days with amoxycillin/clavulanate orally twice daily. Water containers and brooders were cleaned and disinfected with chlorhexidine. No further mortality was seen.In the 2022 cluster, three adult breeding birds died acutely and five others showed inappetence, weight loss and diarrhoea approximately 10 days after heavy rains flooded the local river. The five birds were treated with amoxycillin/clavulanate orally twice daily and oral fluids for 5 days. Two birds died and three survived. No breeding occurred in the aviaries in the following season. PATHOLOGICAL FINDINGS: In 2016, the chicks showed pulmonary changes ranging from congestion and oedema to heterophilic inflammation consistent with septicaemia.In 2022, the adult birds showed proliferation of bacteria in the distal small intestine associated with mucosal ulceration and heterophilic infiltration. Acid-fast staining of the caecal contents in one bird showed organisms consistent with Cryptosporidium spp. LABORATORY FINDINGS: Aerobic bacterial cultures of the lung and liver of two affected chicks carried out in 2016 showed heavy growth of Plesiomonas shigelloides. The same organism was cultured from water trays and holding tanks containing water boatmen (Sigara arguta) on which the chicks were fed.In 2022, cultures from the livers of three dead birds each showed a mixed bacterial growth with differing dominant organisms (Aeromonas sobria, Hafnia alvei, Citrobacter freundii and an Enterococcus sp.). PCR and sequencing confirmed Cryptosporidium parvum in the caecum of one bird. Fresh faeces from 24 breeding birds from the captive breeding facilities were negative by PCR for Cryptosporidium spp.The captive breeding facilities obtain water for the aviaries and aquatic invertebrates to feed to the chicks from local freshwater sources. Water quality testing at the Cape Sanctuary revealed concentrations of faecal indicator bacteria in excess of safe drinking water guidelines, with peaks following heavy rainfall. CLINICAL RELEVANCE: Fluctuations in water quality associated with mammalian faecal bacteria can adversely affect bird health and impact on captive rearing of endangered wildlife.
  • Item
    A novel, stain-free, natural auto-fluorescent signal, Sig M, identified from cytometric and transcriptomic analysis of infectivity of Cryptosporidium hominis and Cryptosporidium parvum.
    (Frontiers Media S.A., 2023-05-22) Ogbuigwe P; Roberts JM; Knox MA; Heiser A; Pita A; Haack NA; Garcia-Ramirez JC; Velathanthiri N; Biggs PJ; French NP; Hayman DTS; Xu R
    Cryptosporidiosis is a worldwide diarrheal disease caused by the protozoan Cryptosporidium. The primary symptom is diarrhea, but patients may exhibit different symptoms based on the species of the Cryptosporidium parasite they are infected with. Furthermore, some genotypes within species are more transmissible and apparently virulent than others. The mechanisms underpinning these differences are not understood, and an effective in vitro system for Cryptosporidium culture would help advance our understanding of these differences. Using COLO-680N cells, we employed flow cytometry and microscopy along with the C. parvum-specific antibody Sporo-Glo™ to characterize infected cells 48 h following an infection with C. parvum or C. hominis. The Cryptosporidium parvum-infected cells showed higher levels of signal using Sporo-Glo™ than C. hominis-infected cells, which was likely because Sporo-Glo™ was generated against C. parvum. We found a subset of cells from infected cultures that expressed a novel, dose-dependent auto-fluorescent signal that was detectable across a range of wavelengths. The population of cells that expressed this signal increased proportionately to the multiplicity of infection. The spectral cytometry results confirmed that the signature of this subset of host cells closely matched that of oocysts present in the infectious ecosystem, pointing to a parasitic origin. Present in both C. parvum and C. hominis cultures, we named this Sig M, and due to its distinct profile in cells from both infections, it could be a better marker for assessing Cryptosporidium infection in COLO-680N cells than Sporo-Glo™. We also noted Sig M's impact on Sporo-Glo™ detection as Sporo-Glo™ uses fluoroscein-isothiocynate, which is detected where Sig M also fluoresces. Lastly, we used NanoString nCounter® analysis to investigate the transcriptomic landscape for the two Cryptosporidium species, assessing the gene expression of 144 host and parasite genes. Despite the host gene expression being at high levels, the levels of putative intracellular Cryptosporidium gene expression were low, with no significant difference from controls, which could be, in part, explained by the abundance of uninfected cells present as determined by both Sporo-Glo™ and Sig M analyses. This study shows for the first time that a natural auto-fluorescent signal, Sig M, linked to Cryptosporidium infection can be detected in infected host cells without any fluorescent labeling strategies and that the COLO-680N cell line and spectral cytometry could be useful tools to advance the understanding of Cryptosporidium infectivity.