Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Porosity, strength, and alteration – Towards a new volcano stability assessment tool using VNIR-SWIR reflectance spectroscopy
    (Elsevier B V, Amsterdam, 2023-01-15) Kereszturi G; Heap M; Schaefer LN; Darmawan H; Deegan FM; Kennedy B; Komorowski J-C; Mead S; Rosas-Carbajal M; Ryan A; Troll VR; Villeneuve M; Walter TR; Petrone CM
    Volcano slope stability analysis is a critical component of volcanic hazard assessments and monitoring. However, traditional methods for assessing rock strength require physical samples of rock which may be difficult to obtain or characterize in bulk. Here, visible to shortwave infrared (350–2500 nm; VNIR–SWIR) reflected light spectroscopy on laboratory-tested rock samples from Ruapehu, Ohakuri, Whakaari, and Banks Peninsula (New Zealand), Merapi (Indonesia), Chaos Crags (USA), Styrian Basin (Austria) and La Soufrière de Guadeloupe (Eastern Caribbean) volcanoes was used to design a novel rapid chemometric-based method to estimate uniaxial compressive strength (UCS) and porosity. Our Partial Least Squares Regression models return moderate accuracies for both UCS and porosity, with R2 of 0.43–0.49 and Mean Absolute Percentage Error (MAPE) of 0.2–0.4. When laboratory-measured porosity is included with spectral data, UCS prediction reaches an R2 of 0.82 and MAPE of 0.11. Our models highlight that the observed changes in the UCS are coupled with subtle mineralogical changes due to hydrothermal alteration at wavelengths of 360–438, 532–597, 1405–1455, 2179–2272, 2332–2386, and 2460–2490 nm. These mineralogical changes include mineral replacement, precipitation hydrothermal alteration processes which impact the strength of volcanic rocks, such as mineral replacement, precipitation, and/or silicification. Our approach highlights that spectroscopy can provide a first order assessment of rock strength and/or porosity or be used to complement laboratory porosity-based predictive models. VNIR-SWIR spectroscopy therefore provides an accurate non-destructive way of assessing rock strength and alteration mineralogy, even from remote sensing platforms.
  • Item
    The geological history and hazards of a long-lived stratovolcano, Mt. Taranaki, New Zealand
    (Taylor and Francis Group on behalf of the Royal Society of New Zealand, 2021-03-17) Cronin SJ; Zernack AV; Ukstins IA; Turner MB; Torres-Orozco R; Stewart RB; Smith IEM; Procter JN; Price R; Platz T; Petterson M; Neall VE; McDonald GS; Lerner GA; Damaschcke M; Bebbington MS
    Mt. Taranaki is an andesitic stratovolcano in the western North Island of New Zealand. Its magmas show slab-dehydration signatures and over the last 200 kyr they show gradually increasing incompatible element concentrations. Source basaltic melts from the upper mantle lithosphere pond at the base of the crust (∼25 km), interacting with other stalled melts rich in amphibole. Evolved hydrous magmas rise and pause in the mid crust (14–6 km), before taking separate pathways to eruption. Over 228 tephras erupted over the last 30 kyr display a 1000–1500 yr-periodic cycle with a five-fold variation in eruption frequency. Magmatic supply and/or tectonic regime could control this rate-variability. The volcano has collapsed and re-grown 16 times, producing large (2 to >7.5 km3) debris avalanches. Magma intrusion along N-S striking faults below the edifice are the most likely trigger for its failure. The largest Mt. Taranaki Plinian eruption columns reach ∼27 km high, dispersing 0.1 to 0.6 km3 falls throughout the North Island. Smaller explosive eruptions, or dome-growth and collapse episodes were more frequent. Block-and-ash flows reached up to 13 km from the vent, while the largest pumice pyroclastic density currents travelled >23 km. Mt. Taranaki last erupted in AD1790 and the present annual probability of eruption is 1–1.3%.