Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
4 results
Search Results
Item Global Solutions for Sustainable Heating, Ventilation, Air Conditioning, and Refrigeration Systems and Their Suitability to the New Zealand Market(MDPI (Basel, Switzerland), 2025-05) Harvey NA; Rasheed EO; Amores TRP; Molina JLThis paper attempts to find alternative ways in which heating, ventilation, air conditioning and refrigeration systems can be made more energy efficient and sustainable at a global level. Eight technologies or solutions that either passively or supplementarily reduce the heating or cooling load required by a structure are detailed. These technologies or solutions were then presented to heating, ventilation, air conditioning and refrigeration industry professionals in New Zealand to determine their viability and further establish market readiness towards integrating new, innovative, and sustainable solutions in New Zealand. A literature review was conducted to establish the performance of the selected solutions and understand their operational principles and the efficiency they provided. Qualitative research and data collected via semi-structured interviews provided the data for assessing the viability of the selected technologies in the New Zealand market. Following a thematic and hybrid-thematic analysis of the data, the technologies were ranked, and suggestions were made to help improve innovation and energy efficiency in the heating, ventilation, air conditioning, and refrigeration industry in New Zealand. Of the technologies selected, airtightness, heat recovery ventilation retrofits, materials and design principles, and photovoltaic hot water heating were identified as the most viable. The New Zealand market was deemed not to be in a good position to adopt new or alternative solutions. The main issues affecting New Zealand’s market readiness to assimilate innovative and energy-efficient solutions are a lack of new technologies, poor standards of education throughout the industry, a lack of regulation, and a lack of government incentives.Item Analyzing the complexity of animal products’ processing and its impact on sustainability(Frontiers Media S.A., 2024-08-21) Germond A; Fardet A; Álvarez García C; Boland M; Ming Hoang H; Mullen A-M; Kaur L; Nevárez-Moorillón GVProcessing is an inevitable step in the manufacturing of animal-based foods (ABF) and animal by-products (ABP). However, our society has reached a point where our food systems have reached unsustainable levels. The impact of ABF/ABP processing on sustainability has been arguably overlooked in comparison with production. This perspective paper aims to discuss and identify research gaps regarding the assessments of the sustainability of ABF/ABF processing. First, we describe why processing techniques can have various levels of complexity, with uses that are more or less impactful on the environment depending on the products and possible synergies. In the second part, we review how impacts on sustainability have been evaluated at global and local scales using life cycle assessments (LCA). To contribute to such an approach, we suggest novel or recently introduced types of indicators that would improve future LCA studies by capturing relevant information. In the third part, we encourage a systemic view of sustainability by considering the complexity of the whole supply chains of ABF and ABP. We highlight the current gaps or challenges in evaluating sustainability across supply chains and point the readers toward recent studies that address these limitations. We hope this perspective will help improve the design of academic and industrial studies or evaluation of ABF and ABP sustainability.Item The Influence of Rotational Length, along with Pre- and Post-Grazing Measures on Nutritional Composition of Pasture during Winter and Spring on New Zealand Dairy Farms(MDPI (Basel, Switzerland), 2022-08) Kumara SN; Parkinson TJ; Laven R; Donaghy DJThe quality of ryegrass−clover pasture was investigated between August (winter: start of calving) and November (spring: end of breeding) on pasture-based dairy farms (>85% of total feed from pasture) that had short (n = 2, Farms A and B; winter ~30 days, spring ~20−25 days) or long (n = 2, Farms C and D; winter ~35 days, spring ~25−30 days) grazing rotations to determine whether quality was affected by grazing rotation length (RT). Weekly assessments of pasture growth and herbage quality were made using a standardised electronic rising plate meter, and near-infrared spectroscopy, respectively. Data were subjected to repeated measure mixed model analysis, in which herbage quality was the outcome variable. The highest pre-grazing dry matter (PGDM) and height, post-grazing dry matter (DM) and height, and number of live leaves per tiller (leaf regrowth stage, LS) were present in late spring. Neutral detergent fibre (NDF), acid detergent fibre (ADF), metabolisable energy (ME), and organic matter digestibility (OMD) were positively correlated to each other (r2 ≥ 0.8) whilst ADF and lipid, and ADF and OMD were negatively correlated (r2 ≥ −0.8; p < 0.01). Metabolisable energy content was negatively correlated with ADF and NDF (r2 = −0.7, −0.8, respectively), and was inversely related to PGDM. Metabolisable energy was higher (p < 0.05) in farms with shorter (overall mean: 11.2 MJ/kg DM) than longer (10.9 MJ/kg DM) RT. Crude protein was also inversely related to PGDM and was higher with shorter (23.2% DM) than longer (18.3% DM; p < 0.05) RT. Pre-grazing DM affected the amount of pasture that was grazed and, hence, the amount of DM remaining after grazing (post-grazing DM or residual), so that PGDM was correlated with post-grazing height and residual DM (r2 = 0.88 and 0.51, respectively; both p < 0.001). In conclusion, RT, LS, and PGDM during winter and spring influenced the herbage quality, therefore, better management of pastures may enhance the productivity of dairy cows.Item A Nutritional Investigation of Major Feed Types and Feed Rations Used in Medium-Scale Dairy Production Systems in Sri Lanka(MDPI (Basel, Switzerland), 2022-09-13) Kumara SN; Parkinson TJ; Laven RA; Waghorn GC; Pushpakumara A; Donaghy DJIn this paper, the nutritional quality, digestibility, and chemical composition of major feed types as well as the use of those feeds in rations by medium-scale dairy farmers in the Kurunegala district of Sri Lanka were studied. Nine dairy farms were visited fortnightly over a five-month period to identify the feeds that were commonly used. All farms operated under a stall-feeding system in which a manually mixed ration (MMR) was fed 2–3 times daily. Four forages were identified: Guinea grass ecotype A (Panicum maximum), called Guinea grass; Hybrid Napier CO-3 (Pennisetum purpureum × Pennisetum americanum), called CO-3 grass; Gliricidia (Gliricidia sepium); and maize stover (Zea mays L.), along with three other supplementary feeds (maize silage, barley distillers’ by-products, and commercially formulated cattle feed). These feeds were subjected to proximate analysis and in vitro digestibility analysis. The metabolisable energy (ME) of the forages ranged from 7.5–10.0 MJ/kg dry matter (DM), with the ME of Guinea grass and CO-3 grass (7.5 and 8.0 MJ/kg DM, respectively) being lower than that of Gliricidia (10.0 MJ/kg DM). The neutral detergent fibre (NDF) concentration of both Guinea grass and CO-3 grass (both 72% DM) was much higher than that of Gliricidia (47% DM). Crude protein (CP) was higher in Gliricidia (17.5% DM) than in either Guinea grass or CO-3 grass (8.0 and 8.8% DM, respectively). The ME of the supplementary feeds varied between 11.0 and 12.8 MJ/kg DM, while CP varied between 15.0 and 24.0% DM. The daily ME intake of cows was consistently 10% lower than their calculated daily energy requirement; for dry cows, the mean intake was 90 MJ/cow/day supplied vs. 101 MJ required, while for cows in early lactation the mean intake was 126 MJ/cow/day supplied vs. 140 MJ required. The average CP intake of lactating cows (13.5% DM) was inadequate (requirements: 16 to 17.5% DM), while the average CP intake of dry cows (11.8% DM) was satisfactory (requirements: 11 to 12% DM). The current study shows that the majority of the feed types used in these medium-scale dairy farms provide insufficient ME or CP to meet the nutritional requirements of either lactating or dry cows irrespective of the quantity of feed provided.
