Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Bioactive Yoghurt Containing Curcumin and Chlorogenic Acid Reduces Inflammation in Postmenopausal Women
    (MDPI (Basel, Switzerland), 2022-11-02) Ahmed Nasef N; Thota RN; Mutukumira AN; Rutherfurd-Markwick K; Dickens M; Gopal P; Singh H; Garg ML; Bordoni A
    Menopause is marked by a gradual and permanent decrease of estrogen from the ovaries, leading to metabolic and physiological changes in the body. Combined with increased body mass index, postmenopausal women have elevated systemic inflammation and metabolic disturbances leading to increased risk of developing chronic diseases. A bioactive coconut yoghurt containing curcumin and chlorogenic acid was developed with the potential to target inflammatory processes. In this randomized crossover study, healthy postmenopausal women with a BMI of 25-40 were recruited to consume 125 g of either the bioactive or placebo yoghurt. Blood samples were collected at baseline, 30 min, and 1, 2, 3 and 4 h postprandially. Plasma inflammatory markers (TNFα and IL6) and metabolic markers (triglycerides, insulin and glucose) were measured. Participants had significantly lower plasma TNFα Cmax after consumption of the bioactive yoghurt compared to placebo (mean difference = 0.3 pg/mL; p = 0.04). Additionally, plasma TNFα was significantly lower postprandially compared to baseline after consumption of the bioactive yogurt but not the placebo. No differences were observed in the metabolic markers measured. Conclusions: The bioactive yoghurt fortified with curcumin and chlorogenic acid has the potential to reduce inflammatory mediators; however, a larger and longer-term study is required to confirm these findings.
  • Item
    The Inhibitory Effects of New Zealand Pine Bark (Enzogenol®) on α-Amylase, α-Glucosidase, and Dipeptidyl Peptidase-4 (DPP-4) Enzymes.
    (MDPI (Basel, Switzerland), 12/04/2022) Lim WXJ; Gammon CS; von Hurst P; Chepulis L; Page RA
    The New Zealand pine bark extract (Enzogenol®) has previously been shown to elicit acute hypoglycaemic effects in humans. The present study investigated the underlying mechanisms of Enzogenol® in reducing postprandial glucose in humans. The potential inhibitory action of Enzogenol® against digestive enzymes: α-amylase and α-glucosidase, and dipeptidyl peptidase-4 (DPP-4) enzyme was determined. Enzogenol® demonstrated the ability to inhibit all three enzymes: α-amylase enzyme activity (IC50 3.98 ± 0.11 mg/mL), α-glucosidase enzyme activity (IC50 13.02 ± 0.28 μg/mL), and DPP-4 enzyme activity (IC50 2.51 ± 0.04 mg/mL). The present findings indicate the potential for Enzogenol® to improve postprandial glycaemia by delaying carbohydrate digestion via the inhibition of digestive enzymes (α-amylase and α-glucosidase), and enhancing the incretin effect via inhibiting the dipeptidyl-peptidase-4 enzyme. The inhibitory actions of Enzogenol® on enzymes should therefore be further validated in humans for its potential use in type 2 diabetes mellitus prevention and management.
  • Item
    A Narrative Review of Human Clinical Trials on the Impact of Phenolic-Rich Plant Extracts on Prediabetes and Its Subgroups
    (MDPI (Basel, Switzerland), 22/10/2021) Lim WXJ; Gammon CS; von Hurst P; Chepulis L; Page RA
    Phenolic-rich plant extracts have been demonstrated to improve glycemic control in individuals with prediabetes. However, there is increasing evidence that people with prediabetes are not a homogeneous group but exhibit different glycemic profiles leading to the existence of prediabetes subgroups. Prediabetes subgroups have been identified as: isolated impaired fasting glucose (IFG), isolated impaired glucose tolerance (IGT), and combined impaired fasting glucose and glucose intolerance (IFG/IGT). The present review investigates human clinical trials examining the hypoglycemic potential of phenolic-rich plant extracts in prediabetes and prediabetes subgroups. Artemisia princeps Pampanini, soy (Glycine max (L.) Merrill) leaf and Citrus junos Tanaka peel have been demonstrated to improve fasting glycemia and thus may be more useful for individuals with IFG with increasing hepatic insulin resistance. In contrast, white mulberry (Morus alba Linn.) leaf, persimmon (Diospyros kaki) leaf and Acacia. Mearnsii bark were shown to improve postprandial glycemia and hence may be preferably beneficial for individuals with IGT with increasing muscle insulin resistance. Elaeis guineensis leaf was observed to improve both fasting and postprandial glycemic measures depending on the dose. Current evidence remains scarce regarding the impact of the plant extracts on glycemic control in prediabetes subgroups and therefore warrants further study.
  • Item
    Nature-Assembled Structures for Delivery of Bioactive Compounds and Their Potential in Functional Foods
    (Frontiers Media SA, 24/09/2020) Acevedo-Fani A; Dave A; Singh H
    Consumers are demanding more natural, healthy, and high-quality products. The addition of health-promoting substances, such as bioactive compounds, to foods can boost their therapeutic effect. However, the incorporation of bioactive substances into food products involves several technological challenges. They may have low solubility in water or poor stability in the food environment and/or during digestion, resulting in a loss of their therapeutic properties. Over recent years, the encapsulation of bioactive compounds into laboratory-engineered colloidal structures has been successful in overcoming some of these hurdles. However, several nature-assembled colloidal structures could be employed for this purpose and may offer many advantages over laboratory-engineered colloidal structures. For example, the casein micelles and milk fat globules from milk and the oil bodies from seeds were designed by nature to deliver biological material or for storage purposes. These biological functional properties make them good candidates for the encapsulation of bioactive compounds to aid in their addition into foods. This review discusses the structure and biological function of different nature-assembled carriers, preparation/isolation methods, some of the advantages and challenges in their use as bioactive compound delivery systems, and their behavior during digestion.