Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Recognition of Potential Geosites Utilizing a Hydrological Model within Qualitative–Quantitative Assessment of Geodiversity in the Manawatu River Catchment, New Zealand
    (MDPI (Basel, Switzerland), 2023-02-27) Zakharovskyi V; Németh K; Azamathulla H
    Hydrology is one of the most influential elements of geodiversity, where geology and geomorphology stand as the main values of abiotic nature. Hydrological erosion created by river systems destructing rock formations (eluvial process) from streams’ sources and then transporting and redepositing (alluvial process) the rock debris into the main river channels, make it an ongoing transformation element of the abiotic environment along channel networks. Hence, this manuscript demonstrates the influence of hydrological elements on geosite recognition, specifically for qualitative–quantitative assessment of geodiversity, which is based on a combination of geological and geomorphological values. In this concept, a stream system will be treated as an additional element. The basement area of the Manawatu Region has been utilized as the territory for the research of hydrological assessment. The region is in the southern part of the North Island of New Zealand and has relatively low geological and geomorphological values and diversity. The Strahler order parameter will be demonstrated as a hydrological element for geodiversity assessment. This parameter has been chosen as one of the most common and acceptable within geographical information system (GIS) environments. The result of this assessment compares the influences of Strahler order on qualitative–quantitative assessment of geodiversity and provides its drawbacks. Additionally, the places with high values will be considered for more accurate field observation to be nominated as potential geosites with an opportunity for geoeducational and geotouristic significance.
  • Item
    Visitation Rate Analysis of Geoheritage Features from Earth Science Education Perspective Using Automated Landform Classification and Crowdsourcing: A Geoeducation Capacity Map of the Auckland Volcanic Field, New Zealand
    (MDPI (Basel, Switzerland), 2021-11-22) Németh B; Németh K; Procter JN; Jordá Pardo JF
    The increase in geoheritage studies has secured recognition globally regarding the importance of abiotic natural features. Prominent in geoheritage screening practices follows a multicriteria assessment framework; however, the complexity of interest in values often causes decision making to overlook geoeducation, one of the primary facets of geosystem services. Auckland volcanic field in New Zealand stretches through the whole area of metropolitan Auckland, which helps preserve volcanic cones and their cultural heritage around its central business district (CBD). They are important sites for developing tourist activities. Geoeducation is becoming a significant factor for tourists and others visiting geomorphological features, but it cannot be achieved without sound planning. This paper investigates the use of big data (FlickR), Geopreservation Inventory, and Geographic Information System for identifying geoeducation capacity of tourist attractions. Through landform classification using the Topographic Position Index and integrated with geological and the inventory data, the underpromoted important geoeducation sites can be mapped and added to the spatial database Auckland Council uses for urban planning. The use of the Geoeducation Capacity Map can help resolve conflicts between the multiple objectives that a bicultural, metropolitan city council need to tackle in the planning of upgrading open spaces while battling of growing demand for land.
  • Item
    Geoheritage Values of the Wairarapa
    (12/10/2020) Palmer J; Nemeth K; Palmer A; Kosik S
    The Manawatu and Wairarapa regions, lower North Island, are an important geological archive for New Zealand but are not among the iconic geotourism attractions of New Zealand. Recently the geoheritage values of the region have been discussed by various groups including Massey University and Horizons Regional Council with an aim to promote the region to visitors seeking destinations with geological significance. The suggestion has been made the Manawatu River form the backbone of a geopark. While Manawatu River is regionally significant, we argue it lacks the unique attributes needed for globally significant geoheritage value. Here we demonstrate the wider region has at least two globally unique and geologically superb features that should be evaluated using global comparative studies. Exceptional turbidite successions representing accretionary prism successions are exposed in the Wairarapa region. These are comparable to the iconic “flysch” locations of the North American Cordillera, the Alps, the Pyrenees and the Carpathians. Furthermore, a succession of thrust faults and related mélange sequences are among the best exposed and most accessible in New Zealand. These undoubtedly carry high geoheritage value and we propose that these two geological features, with community support, regional council funding and the local university (Massey) facilitating the transfer of knowledge to the community, should be signposted and promoted to visitors. In the long term the stunning geological succession of the Wairarapa Mudstone Country should gain international recognition and form the basis of a UNESCO Global Geopark.