Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Nitrogen Use Efficiency and Excretion in Grazing Cows with High and Low Milk Urea Nitrogen Breeding Values
    (MDPI (Basel, Switzerland), 2021-09-01) Correa-Luna M; Donaghy D; Kemp P; Schutz M; Lopez-Villalobos N
    Milk urea nitrogen content is moderately heritable and is phenotypically related to urine nitrogen (UN). Based on this relationship, it has been suggested that genetic selection for lower milk urea nitrogen in grazing dairy cows could decrease UN concentration thereby reducing nitrogen excretions into the ground. The objective of this study was to compare the nitrogen use efficiency (NUE) and excretion in grazing cows with high and low milk urea nitrogen breeding values (MUNBV) in two farms of contrasting farming intensity. On the high-intensity farm (HIF) 68 and 70 cows with low and high MUNBV, respectively, were fed higher levels of supplementation and milked twice-daily, while on the low-intensity farm (LIF) 82 and 86 cows with low and high MUNBV, respectively, were fed lower levels of supplementation milked once-daily. Nitrogen use efficiency (g/g) was calculated as the ratio of daily milk N to daily N intake. Daily N intake (g/day) was derived from feed intake estimates based on energy requirements. The UN (g/day) was estimated by back-calculation from dietary N and subtracting milk N, faecal N, and N retained in body tissues. Irrespective of farm, cows with low MUNBV had significantly lower MY and milk urea nitrogen (p < 0.001) but this was not linked to significantly less UN. In the LIF, cows with low MUNBV had lower NUE (p < 0.001) than cows with high MUNBV, and this was explained by the reduced protein yield (p < 0.001). Selecting cows for low MUNBV was not an effective tool to reduce N losses and to increase the NUE in two dairy farms of contrasting farming intensity.
  • Item
    Productivity, profitability and nitrogen utilisation efficiency of two pasture-based milk production systems differing in the milking frequency and feeding level
    (2/02/2021) Correa-Luna M; Donaghy D; Kemp P; Shalloo L; Ruelle E; Hennessy D; López-Villalobos N
    The aim of this study was to model the productivity, profitability and the nitrogen (N) utilisation efficiency (NUE) of two spring-calving pasture-based milk production systems differing in milking frequency and intensification levels in New Zealand. For this purpose, physical performance data from a low-intensity production system where cows were milked once per day (OAD-LI) and from a high-intensity production system where cows were milked twice per day (TAD-HI) were employed. OAD-LI cows were milked once-daily with a stocking rate (SR) of 2.1 cows/ha and fed diets with low supplementation (304 kg pasture silage/cow) with applications of 134 kg N fertiliser/ha and TAD-HI cows were milked twice-daily with a SR of 2.8 cows/ha and fed diets of higher supplementation (429 kg pasture silage and 1695 kg concentrate/cow) with applications of 87 kg N fertiliser/ha. The Moorepark Dairy System Model was used to evaluate production, economic performance and N balance on an annual basis. Despite the higher feed costs of TAD-HI as more supplementation was utilised, profitability per hectare was 16% higher because more cows were milked with a higher milk yield per cow (milking frequency) when compared to OAD-LI. At the cow level, the NUE was higher in TAD-HI (30% vs. 27%) reflecting the better balanced diet for energy and crude protein and higher milk yields as a result of milking frequency. At the farm scale the NUE was higher (38% vs. 26%) in the TAD-HI due to the losses associated with the imported feed being excluded and higher N captured in milk. These results suggest that milking frequency, the use of feed supplementation and application of N fertiliser as management tools on grazing dairy systems affect productivity, profitability and N balance. Further studies are required to find optimal stocking rates in combination with the use of supplementary feed and N fertiliser application that maximize milk production and profitability for OAD and TAD milking production systems but minimize N losses.