Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Response of Strawberry to the Substitution of Blue Light by Green Light in an Indoor Vertical Farming System
    (MDPI (Basel, Switzerland), 2022-12-28) Avendaño-Abarca VH; Alvarado-Camarillo D; Valdez-Aguilar LA; Sánchez-Ortíz EA; González-Fuentes JA; Cartmill AD; Jeong BR
    Indoor production systems with light emitting diode (LED) lamps are a feasible alternative for increasing strawberry productivity by reducing the incidence of pests and diseases and the damage caused by extreme weather events. Blue (BL) and red (RL) LED light are considered the most important light spectra for photosynthesis and crop yield; however, recent studies have demonstrated that the beneficial effects of green light (GL) have been underestimated. This information would be of particular importance for strawberry production in controlled-environments/vertical farming systems as it may lower input costs and enhance production efficiency and quality and marketability. The present study aimed to define the effect of GL in combination with BL in strawberry. A proportion of 20% GL (20% BL + 60% RL) of total photosynthetic photon flux density was beneficial for plant growth and productivity; however, a 27% GL (12% BL + 61% RL) proportion was detrimental or comparable to that with 6% GL (36% BL + 58% RF). Total dry mass increased 51% when plants were illuminated with 20% GL lamps compared to those with 6% GL; the most impacted plant part was the root as it increased by 155%. The higher yield was observed with GL at 20%, but further increasing GL to 27% resulted in reduced yield. GL at 20% and 27% exhibited higher photosynthesis but reduced transpiration, stomatic conductance, and internal CO2, which in turn increased instantaneous and intrinsic water-use efficiency. Plants with the highest yield (20% GL) exhibited lower total soluble solids in fruits but still the values obtained were acceptable (8.25 °Brix); these fruits contained a high total sugars and phenolics concentration but a reduced antioxidant scavenging capacity. High proportions of GL were associated with a higher leaf and fruit Ca and a higher leaf P and K, which may be due to the increased allocation of biomass to the roots. In conclusion, GL at 20% and BL at 20% resulted in the best growth and yield parameters, enhanced net photosynthesis rate, water-use efficiency and fruit quality attributes. The effects of GL observed in this study may also be important for other high-value horticultural crops suitable for indoor vertical farming.
  • Item
    Aboveground Structural Attributes and Morpho-Anatomical Response Strategies of Bromus valdivianus Phil. and Lolium perenne L. to Severe Soil Water Restriction
    (MDPI (Basel, Switzerland), 2023-12-01) Zhang Y; García-Favre J; Hu H; López IF; Ordóñez IP; Cartmill AD; Kemp PD; Głab T
    Grass species have a range of strategies to tolerate soil water restriction, which are linked to the environmental conditions at their site of origin. Climate change enhances the relevance of the functional role of anatomical attributes and their contribution as water stress tolerance factors. Morpho-anatomical traits and adjustments that contribute to drought resistance in Lolium perenne L. (Lp) and Bromus valdivianus Phil. (Bv), a temperate humid grass species, were analysed. The structure of the leaves and pseudostems (stems only in Lp) grown at 20–25% field capacity (FC) (water restriction) and 80–85% FC (control) were evaluated by making paraffin sections. In both species, water restriction reduced the thickness of the leaves and pseudostems, along with the size of the vasculature. Bv had long and dense leaf hairs, small and numerous stomata, and other significant adaptive traits under water stress, including thicker pseudostems (p ≤ 0.001), a greatly thickened bundle sheath wall (p ≤ 0.001) in the pseudostem to ensure water flow, and a thickened cuticle covering on leaf surfaces (p ≤ 0.01) to avoid water loss. Lp vascular bundles developed throughout the stem, and under water restriction the xylem vessel walls were strengthened and lignified. Lp leaves had individual traits of a ribbed/corrugated-shaped upper surface, and the stomata were positioned to maintain relative humidity outside the leaf surface. Water restriction significantly changed the bulliform cell depth in Lp (p ≤ 0.05) that contributed to water loss reduction via the curling leaf blade. This study demonstrated that the two grass species, through different morphological traits, were able to adjust their individual tissues and cells in aboveground parts to reach similar physiological functions to reduce water loss with increased water restriction. These attributes explain how both species enhance persistence and resilience under soil water restriction.