Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
3 results
Search Results
Item Molecular phylogenetics illuminates the evolutionary history and hidden diversity of Australian cave crick ets (Orthoptera: Rhaphidophoridae)(John Wiley and Sons Ltd on behalf of Royal Entomological Society., 2025-06-23) Beasley-Hall PG; Trewick SA; Eberhard SM; Zwick A; Reed EH; Cooper SJB; Austin AD; Blaimer BCave crickets (Orthoptera: Rhaphidophoridae) are a globally distributed group of insects found in dark, humid microhabitats including natural caves, alpine scree, and forest litter. Ten extant subfamilies are currently recognised, of which Macropathinae, which comprises the entirety of the fauna in South America, South Africa, Australia, and New Zealand, is thought to be the most ancient. New Zealand comprises high phylogenetic diversity of Rhaphidophoridae throughout its mesic zone, with most species occurring above ground. In contrast, the Australian fauna is poorly known and contains an apparently greater relative proportion of species utilising caves as refugia. A robust phylogenetic framework is needed to underpin future taxonomic work on the group and uncover potentially contrasting patterns of taxonomic diversity. Here, we performed fossil-calibrated phylogenetic analysis using whole mitochondrial genomes and nuclear markers to reconstruct the evolutionary history of Macropathinae with a focus on the Australian fauna. By dramatically increasing taxon sampling relative to past studies, we recovered the Australian fauna as rampantly polyphyletic, with the remaining Macropathinae nested among six distinct Australian lineages. Deep divergences between major clades imply additional Australian lineages remain undetected, either due to extinction or sampling bias, and have likely confounded past biogeographic signal. We inferred the radiation of Macropathinae began during the Lower Cretaceous prior to the fragmentation of Gondwana with a potential Pangaean origin for Rhaphidophoridae. Finally, we found evidence for several undescribed species and genera of Australian Macropathinae, all of which qualify as short-range endemics, and discuss the conservation implications of these restricted distributions.Item High-coverage genomes to elucidate the evolution of penguins(Oxford University Press and BGI, 2019-09-18) Pan H; Cole TL; Bi X; Fang M; Zhou C; Yang Z; Ksepka DT; Hart T; Bouzat JL; Argilla LS; Bertelsen MF; Boersma PD; Bost C-A; Cherel Y; Dann P; Fiddaman SR; Howard P; Labuschagne K; Mattern T; Miller G; Parker P; Phillips RA; Quillfeldt P; Ryan PG; Taylor H; Thompson DR; Young MJ; Ellegaard MR; Gilbert MTP; Sinding M-HS; Pacheco G; Shepherd LD; Tennyson AJD; Grosser S; Kay E; Nupen LJ; Ellenberg U; Houston DM; Reeve AH; Johnson K; Masello JF; Stracke T; McKinlay B; Borboroglu PG; Zhang D-X; Zhang GBACKGROUND: Penguins (Sphenisciformes) are a remarkable order of flightless wing-propelled diving seabirds distributed widely across the southern hemisphere. They share a volant common ancestor with Procellariiformes close to the Cretaceous-Paleogene boundary (66 million years ago) and subsequently lost the ability to fly but enhanced their diving capabilities. With ∼20 species among 6 genera, penguins range from the tropical Galápagos Islands to the oceanic temperate forests of New Zealand, the rocky coastlines of the sub-Antarctic islands, and the sea ice around Antarctica. To inhabit such diverse and extreme environments, penguins evolved many physiological and morphological adaptations. However, they are also highly sensitive to climate change. Therefore, penguins provide an exciting target system for understanding the evolutionary processes of speciation, adaptation, and demography. Genomic data are an emerging resource for addressing questions about such processes. RESULTS: Here we present a novel dataset of 19 high-coverage genomes that, together with 2 previously published genomes, encompass all extant penguin species. We also present a well-supported phylogeny to clarify the relationships among penguins. In contrast to recent studies, our results demonstrate that the genus Aptenodytes is basal and sister to all other extant penguin genera, providing intriguing new insights into the adaptation of penguins to Antarctica. As such, our dataset provides a novel resource for understanding the evolutionary history of penguins as a clade, as well as the fine-scale relationships of individual penguin lineages. Against this background, we introduce a major consortium of international scientists dedicated to studying these genomes. Moreover, we highlight emerging issues regarding ensuring legal and respectful indigenous consultation, particularly for genomic data originating from New Zealand Taonga species. CONCLUSIONS: We believe that our dataset and project will be important for understanding evolution, increasing cultural heritage and guiding the conservation of this iconic southern hemisphere species assemblage.Item Aristaeella hokkaidonensis gen. nov. sp. nov. and Aristaeella lactis sp. nov., two rumen bacterial species of a novel proposed family, Aristaeellaceae fam. nov.(Microbiology Society, 2023-05-12) Mahoney-Kurpe SC; Palevich N; Noel SJ; Gagic D; Biggs PJ; Soni P; Reid PM; Koike S; Kobayashi Y; Janssen PH; Attwood GT; Moon CDTwo strains of Gram-negative, anaerobic, rod-shaped bacteria, from an abundant but uncharacterized rumen bacterial group of the order 'Christensenellales', were phylogenetically and phenotypically characterized. These strains, designated R-7T and WTE2008T, shared 98.6-99.0 % sequence identity between their 16S rRNA gene sequences. R-7T and WTE2008T clustered together on a distinct branch from other Christensenellaceae strains and had <88.1 % sequence identity to the closest type-strain sequence from Luoshenia tenuis NSJ-44T. The genome sequences of R-7T and WTE2008T had 83.6 % average nucleotide identity to each other, and taxonomic assignment using the Genome Taxonomy Database indicates these are separate species within a novel family of the order 'Christensenellales'. Cells of R-7T and WTE2008T lacked any obvious appendages and their cell wall ultra-structures were characteristic of Gram-negative bacteria. The five most abundant cellular fatty acids of both strains were C16 : 0, C16 : 0 iso, C17 : 0 anteiso, C18 : 0 and C15 : 0 anteiso. The strains used a wide range of the 23 soluble carbon sources tested, and grew best on cellobiose, but not on sugar-alcohols. Xylan and pectin were fermented by both strains, but not cellulose. Acetate, hydrogen, ethanol and lactate were the major fermentation end products. R-7T produced considerably more hydrogen than WTE2008T, which produced more lactate. Based on these analyses, Aristaeellaceae fam. nov. and Aristaeella gen. nov., with type species Aristaeella hokkaidonensis sp. nov., are proposed. Strains R-7T (=DSM 112795T=JCM 34733T) and WTE2008T (=DSM 112788T=JCM 34734T) are the proposed type strains for Aristaeella hokkaidonensis sp. nov. and Aristaeella lactis sp. nov., respectively.
