Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
4 results
Search Results
Item Assessing the Leaf Blade Nutrient Status of Pinot Noir Using Hyperspectral Reflectance and Machine Learning Models(MDPI (Basel, Switzerland), 2023-03-08) Lyu H; Grafton M; Ramilan T; Irwin M; Sandoval E; Díaz-Varela RAMonitoring grape nutrient status, from flowering to veraison, is important for viticulturists when implementing vineyard management strategies, in order to produce quality wines. However, traditional methods for measuring nutrient elements incur high labour costs. The aim of this study is to explore the potential of predicting grapevine leaf blade nutrient concentration based on hyperspectral data. Leaf blades were collected at two Pinot Noir commercial vineyards at Martinborough, New Zealand. The leaf blade spectral data were obtained with a handheld spectroradiometer, to evaluate surface reflectance and derivative spectra in the spectrum range between 400 and 2400 nm. Afterwards, leaf blades nutrient concentrations (N, P, K, Ca, and Mg) were measured, and their relationships with the hyperspectral data were modelled by machine learning models; partial least squares regression (PLSR), random forest regression (RFR), and support vector regression (SVR) were used. Pearson correlation and recursive feature elimination, based on cross-validation, were used as feature selection methods for RFR and SVR, to improve the model’s performance. The variable importance score of PLSR, and permutation variable importance of RFR and SVR, were used to determine the most sensitive wavelengths, or spectral regions related to each biochemical variable. The results showed that the best predictive performance for leaf blade N concentration was based on PLSR to raw reflectance data (R2 = 0.66; RMSE = 0.15%). The combination of support vector regression with the Pearson correlation selected method and second derivative reflectance provided a high accuracy for K and Ca modelling (R2 = 0.7; RMSE = 0.06%; R2 = 0.62; RMSE = 0.11%, respectively). However, the modelling performance for P and Mg, by different feature groups and variable selection methods, was poor (R2 = 0.15; RMSE = 0.02%; R2 = 0.43; RMSE = 0.43%, respectively). Thus, a larger dataset is needed for improving the prediction of P and Mg. The results indicated that for Pinot Noir leaf blades, raw reflectance data had potential for the prediction of N concentration, while the second-derivative spectra were more suitable to predict K and Ca. This study led to the provision of rapid and non-destructive measurements of grapevine leaf nutrient status.Item Evaluation of the Use of UAV-Derived Vegetation Indices and Environmental Variables for Grapevine Water Status Monitoring Based on Machine Learning Algorithms and SHAP Analysis(MDPI AG, 23/11/2022) Wei H-E; Grafton MC; Bretherton M; Irwin M; Sandoval E; Mouazen, AMItem Evaluation of Point Hyperspectral Reflectance and Multivariate Regression Models for Grapevine Water Status Estimation(MDPI AG, 12/08/2021) Wei H-E; Grafton M; Bretherton M; Irwin M; Sandoval EMonitoring and management of plant water status over the critical period between flower-ing and veraison, plays a significant role in producing grapes of premium quality. Hyperspectral spectroscopy has been widely studied in precision farming, including for the prediction of grapevine water status. However, these studies were presented based on various combinations of transformed spectral data, feature selection methods, and regression models. To evaluate the performance of different modeling pipelines for estimating grapevine water status, a study spanning the critical period was carried out in two commercial vineyards at Martinborough, New Zealand. The modeling used six hyperspectral data groups (raw reflectance, first derivative reflectance, second derivative reflectance, continuum removal variables, simple ratio indices, and vegetation indices), two variable selection methods (Spearman correlation and recursive feature elimination based on cross-validation), an ensemble of selected variables, and three regression models (partial least squares regression, random forest regression, and support vector regression). Stem water potential (used as a proxy for vine water status) was measured by a pressure bomb. Hyperspectral reflectance was undertaken by a handheld spectroradiometer. The results show that the best predictive performance was achieved by applying partial least squares regression to simple ratio indices (R2 = 0.85; RMSE = 110 kPa). Models trained with an ensemble of selected variables comprising multicombination of transformed data and variable selection approaches outperformed those fitted using single combinations. Although larger data sizes are needed for further testing, this study compares 38 modeling pipelines and presents the best combination of procedures for estimating vine water status. This may lead to the provision of rapid estimation of vine water status in a nondestructive manner and highlights the possibility of applying hyperspectral data to precision irrigation in vineyards.Item Assessing the Leaf Blade Nutrient Status of Pinot Noir Using Hyperspectral Reflectance and Machine Learning Models(MDPI AG, 8/03/2023) Lyu H; Grafton MC; Ramilan T; Irwin M; Sandoval - Cruz E; Díaz-Varela, RA
