Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Effect of Water Restriction and Supplementary Nitrogen on the Growth Dynamics of Bromus valdivianus Phil
    (MDPI (Basel, Switzerland), 2025-09) López IF; Rodríguez A; Cartmill AD; Dörner J; Calvache I; Balocchi O; Sanders D; Liu Y
    Decreasing summer precipitation is negatively affecting global productivity of grassland plant species. This study evaluated the effect of three levels of soil plant available water [80–90% PAW-H (high), 50–60% PAW-M (medium), and 20–30% PAW-L (low), which were soil water restriction (SWR) equivalent to (v/v%) 10–20%, 40–50%, and 70–80%, respectively] and nitrogen (N 0 and 110 kg ha−1) on growth and nutritional quality of Bromus valdivianus Phil. (Bv) mini-swards (MS; 125 L containers), arranged in three blocks. Total lamina length (TLL), leaf expansion rate (LER; cm d−1), phyllochron (Phy) expressed as “days” and “°C day”, tiller mass (TM, g tiller−1), number of live leaves (NLL), number of dead leaves (NDL), and accumulated herbage mass [AHM, g DM (dry mass) m2] were measured. Defoliation events, leaving 5 cm residual height, were carried out every 320 GDD (using a base growth temperature of 5 °C), and foliage samples for nutritive quality [DM, crude protein (CP), neutral detergent fibre (NDF), acid detergent fibre (ADF), water-soluble carbohydrates (WSC), and metabolic energy (ME)] were collected. Reducing PAW to 20–30% decreased the AHM by 60.7%, TLL by 52.7%, LER by 50%, and TM by 50%, with significant interaction between the main effects for AHM, TLL, and LER. The addition of N increased the AHM by 31.6%, LER by 21.6%, and TLL by 19.6%. The Phy remained undisturbed by decreasing PAW and increasing the N rate. Nutritive quality was generally not statistically different for the interaction or between N levels. However, low PAW levels resulted in statistically (p < 0.05) lower ME and higher concentrations of NDF. In general, growth, AHM, and nutritional quality of Bv during the summer period were driven by PAW levels and by the availability of N. Plant available water levels of 50% to 60% at 20 cm soil depth, with the addition of N, allowed Bv to reach its highest production.
  • Item
    Changes to soil profile carbon and nutrient distribution following pasture renewal with full inversion tillage
    (Taylor and Francis Group, 2024-07-18) Amanor YJ; Hanly JA; Calvelo-Pereira R; Hedley MJ
    Full inversion tillage (FIT) at pasture renewal is a management option aiming to increase carbon stocks in long-term pasture, to achieve carbon neutrality. This study investigated the effects of FIT on carbon and nutrient distribution in the soil profile (0–7.5, 7.5–15, 15–22.5 and 22.5–30 cm depths) as well as nutrient uptake, and subsequent fodder crop and/or pasture yields across three pasture renewal trials (Trials 1 and 3: Alfisol; Trial 2: Andisol). These effects of FIT were assessed against standard tillage treatments (no till, shallow till), and non-renewed pasture within 8–18 months post-tillage. FIT changed soil carbon stratification, causing 16%–46% reduction in topsoil (0–7.5 cm) cation exchange capacity across the three trials. However, nutrient levels after FIT remained within recommended ranges for crop and/or pasture growth, avoiding any yield reductions. Topsoil fertility post-FIT depended on original degree of nutrient stratification in the soil profile. At Trial 1, temporary deficiencies caused by low subsoil P and K soil tests pre-FIT were anticipated and corrected with fertiliser nutrients for the following break crop and resown pasture. We conclude that soil testing the cultivation depth prior to FIT at pasture renewal provides the necessary soil test information to manage yield expectations.