Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
Search Results
Item Studying the Nonlinear Optical Properties of Fluoride Laser Host Materials in the Ultraviolet Wavelength Region(MDPI (Basel, Switzerland), 2022-01) Van Pham D; Van Nguyen D; Nguyen TX; Doan KAT; Le QM; Pham MH; Cadatal-Raduban M; Principi EFluoride host materials doped with trivalent cerium ions have previously been demonstrated as successful laser materials in the ultraviolet wavelength region. However, the nonlinear optical properties of the fluoride hosts in this wavelength region have not been investigated yet, although nonlinearity could result in undesirable effects such as self-focusing and pulse distortion when these fluoride materials are used as gain media in high-power, ultrashort pulse laser oscillator and amplifier systems. In this work, the nonlinear refractive index of lithium calcium aluminum fluoride (LiCaAlF6), lithium strontium aluminum fluoride (LiSrAlF6), lanthanum fluoride (LaF3), and yttrium lithium fluoride (YLiF4) fluoride host materials are determined using the Kramers–Krönig relation model in the ultraviolet wavelength region. Self-focusing conditions, particularly at the peak laser emission wavelength of these materials, are further analyzed. Results show that LiCaAlF6 has the smallest nonlinear refractive index and self-focusing, making it an ideal host material under the conditions of ultrashort pulse and ultrahigh-power laser generation.Item Ultraviolet-C Photoresponsivity Using Fabricated TiO2 Thin Films and Transimpedance-Amplifier-Based Test Setup(MDPI (Basel, Switzerland), 2022-11) Cadatal-Raduban M; Pope J; Olejníček J; Kohout M; Harrison JA; Hasan SMR; Torres ML; De Luca AC; Mourka AWe report on fabricated titanium dioxide (TiO2) thin films along with a transimpedance amplifier (TIA) test setup as a photoconductivity detector (sensor) in the ultraviolet-C (UV-C) wavelength region, particularly at 260 nm. TiO2 thin films deposited on high-resistivity undoped silicon-substrate at thicknesses of 100, 500, and 1000 nm exhibited photoresponsivities of 81.6, 55.6, and 19.6 mA/W, respectively, at 30 V bias voltage. Despite improvements in the crystallinity of the thicker films, the decrease in photocurrent, photoconductivity, photoconductance, and photoresponsivity in thicker films is attributed to an increased number of defects. Varying the thickness of the film can, however, be leveraged to control the wavelength response of the detector. Future development of a chip-based portable UV-C detector using TiO2 thin films will open new opportunities for a wide range of applications.
