Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    Characterisation of New Zealand Propolis from Different Regions Based on Its Volatile Organic Compounds
    (MDPI (Basel, Switzerland), 2024-07-02) Mountford-McAuley R; Robertson A; Taylor M; Clavijo McCormick A; Falcão SI
    Propolis is a bee product mainly consisting of plant resins and is used by bees to maintain the structural integrity of the colony. Propolis is known to contribute to bee health via its antimicrobial activity and is a valued product for human use owing to its nutritional and medicinal properties. Propolis is often characterised into seven categories depending on the resin source. New Zealand propolis is typically assumed as being poplar-type propolis, but few studies have chemically characterised New Zealand propolis to confirm or reject this assumption. Here, for the first time, we characterise propolis originating from different regions in New Zealand based on its volatile organic compounds, using gas chromatography coupled with mass spectrometry (GC-MS). To support this characterisation, we also collected and analysed resin samples from a variety of resin-producing plants (both native to New Zealand and introduced). Our findings suggest that bees mainly use poplar as a resin source, but also utilize native plant species to produce propolis. While regional variation did not allow for clear separation between samples, some patterns emerged, with samples from some regions having more chemical complexity and a higher contribution from native species (as suggested by a higher number of compounds unique to native species resin). Further studies are needed to accurately identify the botanical sources contributing to these samples. It may be also of interest to explore the biological activity of regional propolis samples and their potential nutritional or medicinal benefits.
  • Item
    Recognition of an Odour Pattern from Paenibacillus larvae Spore Samples by Trained Detection Dogs
    (MDPI (Basel, Switzerland), 2022-12-30) Thomson N; Taylor M; Gifford P; Sainsbury J; Cross S; Valsecchi PM
    Spores of the bacteria Paenibacillus larvae play a central role in the transmission of American Foulbrood (AFB), a major disease of honey bee (Apis mellifera) colonies. This study investigated whether trained detection dogs could recognise an odour pattern from P. larvae spore samples. Although dogs have previously been used to detect diseased larvae in colonies with AFB, this is the first time they have been investigated for detecting P. larvae spore samples. Given that spores are metabolically inactive, it was unknown whether the spore samples would produce enough volatile organic compounds to form an odour pattern that could be detected by dogs. Three dogs were trained to identify laboratory-produced P. larvae spore samples and were systematically desensitized to non-target odours with a series of control samples. Two of the dogs successfully completed training and were then tested by having each dog perform six searches in an odour-detection carousel with the trainer blinded to the location of the spore samples. In this high-stakes forced-choice test, each dog was asked to identify one new spore sample, containing approximately 93-265 million P. larvae spores, from seven control samples. Both dogs correctly identified the spore sample every time (100% success rate); the probability of this result occurring by chance was p = 0.0000038. Therefore, this study demonstrates that dogs can recognise an odour pattern from bacterial spore samples, in this case, P. larvae, and provides proof of concept for further investigation into the use of detection dogs to reduce the spread of AFB in beekeeping businesses.
  • Item
    Seasonal Volatile Emission Patterns of the Endemic New Zealand Shrub Dracophyllum subulatum on the North Island Central Plateau
    (Frontiers Media S.A., 2021-10) Effah E; Barrett DP; Peterson PG; Potter MA; Holopainen JK; Clavijo McCormick A; Rewald B
    Volatile organic compounds (VOCs) produced by plants are essential indicators of their physiological response to environmental conditions. But evidence of natural variation in VOC emissions and their contributing factors is still limited, especially for non-cultivated species. Here we explored the natural volatile emissions of Dracophyllum subulatum Hook.f., an endemic shrub to the North Island Central Plateau of New Zealand, and determined some environmental factors driving the plant's emissions. Volatile emissions of D. subulatum were measured on four separate occasions from December 2017 to September 2018 using the "push-pull" headspace sampling technique and analyzed using gas chromatography-mass spectrometry (GC-MS). D. subulatum was classified based on the volatiles measured on each sampling occasion using linear discriminant analysis (LDA). On each sampling occasion, we also recorded and compared ambient air temperature, herbivory damage, total soil nitrogen (N), available phosphorus (P), potassium (K), and soil moisture content. The relationship between environmental variables that differed significantly between sampling occasions and volatile emissions were estimated using generalized linear models (GLMs). Based on VOCs measured on each sampling occasion, we were able to distinguish different chemical profiles. Overall, we found that total emission and the relative proportions of all major chemical classes released by D. subulatum were significantly higher during summer. The GLMs reveal that differences in environmental factors between the four sampling occasions are highly associated with changing emissions. Higher temperatures in summer had a consistently strong positive relationship with emissions, while the impacts of soil moisture content, P and K were variable and depended on the chemical class. These results are discussed, particularly how high temperature (warming) may shape volatile emissions and plants' ecology.
  • Item
    Airborne Fumigants and Residual Chemicals in Shipping Containers Arriving in New Zealand
    (Oxford University Press on behalf of the British Occupational Hygiene Society, 2022-05) Hinz R; 't Mannetje A; Glass B; McLean D; Douwes J
    BACKGROUND: Airborne fumigants and other hazardous chemicals inside unopened shipping containers may pose a risk to workers handling containers. METHODS: Grab air samples from 490 sealed containers arriving in New Zealand were analysed for fumigants and other hazardous chemicals. We also collected grab air samples of 46 containers immediately upon opening and measured the total concentration of volatile organic compounds in real-time during ventilation. Additive Mixture Values (AMV) were calculated using the New Zealand Workplace Exposure standard (WES) and ACGIH Threshold Limit Values (TLV) of the 8-h, time-weighted average (TWA) exposure limit. Regression analyses assessed associations with container characteristics. RESULTS: Fumigants were detectable in 11.4% of sealed containers, with ethylene oxide detected most frequently (4.7%), followed by methyl bromide (3.5%). Other chemicals, mainly formaldehyde, were detected more frequently (84.7%). Fumigants and other chemicals exceeded the WES/TLV in 6.7%/7.8%, and 7.8%/20.0% of all containers, respectively. Correspondingly, they more frequently exceeded '1' for the AMV-TLV compared to the AMV-WES (25.7% versus 7.8%). In samples taken upon opening of doors, fumigants were detected in both fumigated and non-fumigated containers, but detection frequencies and exceedances of the WES, TLV, and AMVs were generally higher in fumigated containers. Detection frequencies for other chemicals were similar in fumigated and non-fumigated containers, and only formaldehyde exceeded both the WES and TLV in both container groups. Volatile compounds in container air reduced rapidly during ventilation. Some cargo types (tyres; personal hygiene, beauty and medical products; stone and ceramics; metal and glass; and pet food) and countries of origin (China) were associated with elevated airborne chemical and fumigant concentrations. CONCLUSION: Airborne chemicals in sealed containers frequently exceed exposure limits, both in fumigated and non-fumigated containers, and may contribute to short-term peak exposures of workers unloading or inspecting containers.
  • Item
    Herbivory and Attenuated UV Radiation Affect Volatile Emissions of the Invasive Weed Calluna vulgaris
    (MDPI (Basel, Switzerland), 13/07/2020) Effah E; Barrett DP; Peterson PG; Wargent JJ; Potter MA; Holopainen JK; Clavijo McCormick A
    Calluna vulgaris (heather) is an aggressive invasive weed on the Central Plateau, North Is., New Zealand (NZ), where it encounters different environmental factors compared to its native range in Europe, such as high ultraviolet radiation (UV) and a lack of specialist herbivores. The specialist herbivore Lochmaea suturalis (heather beetle) was introduced from the United Kingdom (UK) in 1996 as a biocontrol agent to manage this invasive weed. Like other plant invaders, a novel environment may be challenging for heather as it adjusts to its new conditions. This process of "adjustment" involves morphological and physiological changes often linked to phenotypic plasticity. The biochemical responses of exotic plants to environmental variables in their invaded range is poorly understood. The production and release of volatile organic compounds (VOCs) is essential to plant communication and highly susceptible to environmental change. This study therefore aimed to explore the VOC emissions of heather in response to different levels of UV exposure, and to feeding damage by L. suturalis. Using tunnel houses clad with UV-selective filters, we measured VOCs produced by heather under NZ ambient, 20% attenuated, and 95% attenuated solar UV treatments. We also compared VOC emissions in the field at adjacent sites where L. suturalis was present or absent. Volatiles produced by the same target heather plants were measured at four different times in the spring and summer of 2018-2019, reflecting variations in beetle's abundance, feeding stage and plant phenology. Heather plants under 95% attenuated UV produced significantly higher amounts of (E)-β-farnesene, decanal, benzaldehyde, and benzeneacetaldehyde compared to 25% attenuated and ambient UV radiation. We also found significant differences in volatiles produced by heather plants in beetle-present versus beetle-absent sites on most sampling occasions. We also recorded a lower number of generalist herbivores on heather at sites where L. suturalis was present. Interactions between invasive plants, a novel environment, and the native communities they invade, are discussed.
  • Item
    Natural Variation in Volatile Emissions of the Invasive Weed Calluna vulgaris in New Zealand
    (MDPI (Basel, Switzerland), 21/02/2020) Effah E; Barrett DP; Peterson PG; Godfrey AJR; Potter MA; Holopainen JK; Clavijo McCormick A
    Invasive plants pose a threat to natural ecosystems, changing the community composition and ecological dynamics. One aspect that has received little attention is the production and emission of volatile organic compounds (VOCs) by invasive plants. Investigating VOCs is important because they are involved in vital ecological interactions such as pollination, herbivory and plant competition. Heather, Calluna vulgaris, is a major invasive weed in New Zealand, especially on the Central Plateau, where it has spread rapidly since its introduction in 1912, outcompeting native species. However, the chemical behaviour of heather in its invaded ranges is poorly understood. We aimed to explore the natural variation in volatile emissions of heather and the biotic and abiotic factors influencing them on the Central Plateau of New Zealand. To this end, foliar volatiles produced by heather at four different sites were collected and analysed using gas chromatography coupled to mass spectrometry. Soil properties, herbivory and other environmental data were also collected at each site to investigate their effects on VOC emissions using generalised linear models (GLMs). Our results reveal significant differences in VOC emissions between sites and suggest that soil nutrients are the main factor accounting for these differences. Herbivory and temperature had only a minor effect, while soil water content had no impact. Further studies are needed to investigate how these variations in the invasive plant's foliar volatiles influence native species.