Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 10 of 14
  • Item
    Reliability of the Enterprise Point-of-Care (EPOC) blood analyzer's calculated arterial oxygen-hemoglobin saturation in immobilized white rhinoceroses (Ceratotherium simum)
    (Wiley Periodicals LLC on behalf of the American Society for Veterinary Clinical Pathology, 2023-09-10) Mtetwa TK; Snelling EP; Donaldson AC; Buss PE; Meyer LCR
    Background Enterprise Point-of-Care (EPOC) blood analysis is used routinely in wildlife veterinary practice to monitor blood oxygenation, but the reliability of the EPOC calculated arterial oxygen-hemoglobin saturation (cSaO2) has never been validated in the white rhinoceros (Ceratotherium simum), despite their susceptibility to hypoxemia during chemical immobilization. Objectives We aimed to evaluate the reliability of the EPOC cSaO2 by comparing it against arterial oxygen-hemoglobin saturation (SaO2) measured by a co-oximeter reference method in immobilized white rhinoceroses. Methods Male white rhinoceroses in two studies (both n = 8) were immobilized by darting with different etorphine-based drug combinations, followed by butorphanol or saline (administered intravenously). Animals in both studies received oxygen via intranasal insufflation after 60 min. Blood samples were drawn, at predetermined time points, from a catheter inserted into the auricular artery and analyzed using the EPOC and a co-oximeter. Bland–Altman (to estimate bias and precision) and area root mean squares (ARMS) plots were used to determine the reliability of the EPOC cSaO2 compared with simultaneous co-oximeter SaO2 readings. Results The rhinoceros were acidotic (pH of 7.3 ± 0.1 [mean ± standard deviation]), hypercapnic (PaCO2 of 73.7 ± 10.5 mmHg), and normothermic (body temperature of 37.4 ± 1.8°C). In total, 389 paired cSaO2-SaO2 measurements were recorded (the cSaO2 ranged between 13.2% and 99.0%, and the SaO2 ranged between 11.8% and 99.9%). The EPOC cSaO2 readings were unreliable (inaccurate, imprecise, and poor ARMS) across the entire saturation range (bias −6%, precision 5%, and ARMS 8%). Conclusions The EPOC cSaO2 is unreliable and should not be used to monitor blood oxygenation in immobilized white rhinoceroses.
  • Item
    Capture and transport of white rhinoceroses (Ceratotherium simum) cause shifts in their fecal microbiota composition towards dysbiosis
    (Oxford University Press and the Society for Experimental Biology, 2023-11-24) Pohlin F; Frei C; Meyer LCR; Roch F-F; Quijada NM; Conrady B; Neubauer V; Hofmeyr M; Cooper D; Stalder G; Wetzels SU; Fuller A
    Translocations of Rhinocerotidae are commonly performed for conservation purposes but expose the animals to a variety of stressors (e.g. prolonged fasting, confinement, novel environment, etc.). Stress may change the composition of gut microbiota, which can impact animal health and welfare. White rhinoceroses in particular can develop anorexia, diarrhea and enterocolitis after translocation. The aim of this study was to investigate the associations of age, sex and translocation on the rhinoceros' fecal bacterial microbiota composition. fecal samples were collected from rhinoceroses at capture (n = 16) and after a >30-hour road transport (n = 7). DNA was isolated from these samples and submitted for 16S rRNA V3-V4 phylotyping. Alpha diversity indices of the rhinoceros' fecal microbiota composition of different age, sex and before and after transport were compared using non-parametric statistical tests and beta diversity indices using Permutational Multivariate Analysis Of Variance (PERMANOVA). Resulting P-values were alpha-corrected (Padj.). Alpha and beta diversity did not differ between rhinoceroses of different age and sex. However, there was a significant difference in beta diversity between fecal samples collected from adult animals at capture and after transport. The most abundant bacterial phyla in samples collected at capture were Firmicutes and Bacteroidetes (85.76%), represented by Lachnospiraceae, Ruminococcaceae and Prevotellaceae families. The phyla Proteobacteria (Padj. = 0.009) and Actinobacteria (Padj. = 0.012), amongst others, increased in relative abundance from capture to after transport encompassing potentially pathogenic bacterial families such as Enterobacteriaceae (Padj. = 0.018) and Pseudomonadaceae (Padj. = 0.022). Important commensals such as Spirochaetes (Padj. = 0.009), Fibrobacteres (Padj. = 0.018) and Lachnospiraceae (Padj. = 0.021) decreased in relative abundance. These results indicate that the stressors associated with capture and transport cause an imbalanced fecal microbiota composition in white rhinoceroses that may lead to potentially infectious intestinal disorders. This imbalance may result from recrudescence of normally innocuous pathogens, increased shedding of pathogens or increased vulnerability to new pathogens.
  • Item
    Two Point-of-Care Cardiac Troponin I Immunoassays Have Acceptable Analytical Performance for the Detection of Measurands of Cardiac Troponin I Cardiac Muscle Homogenates From Southern-Central Black Rhinoceros (Diceros bicornis minor) and Southern White Rhinoceros (Ceratotherium simum simum)
    (Wiley Periodicals LLC on behalf of American Society for Veterinary Clinical Pathology, 2025-06-04) Rautenbach Y; Meyer LCR; Goddard A; Buss PE; Hooijberg EH
    Background Skeletal and possible cardiac muscle damage has been reported in chemically immobilized and transported African rhinoceros during conservation-related activities. The extent of cardiac muscle injury in these rhinoceros is unknown due to a lack of validated cardiac troponin I (cTnI) assays. However, recently, five human cTnI assays were deemed suitable for analytical validation in African rhinoceros based on cTnI sequencing results. Objectives The first objective was to validate two cTnI immunoassay point-of-care analyzers (POCAs) in African rhinoceros and, secondly, to perform quality control (QC) validation for the POCAs. Methods Analytical validation of the Stratus CS Acute Care Troponin I cTnI immunoassay and Atellica VTLi high sensitivity cTnI (hs-cTnI) assay was performed using rhinoceros serum samples and species-specific cardiac muscle homogenate. Experiments included precision studies, reportable range, hemoglobin interference studies, recovery studies, and detection limit studies, with results assessed against prescribed total allowable error (TEa) performance goals. Commercial quality control material (QCM) data were used to calculate bias and imprecision for QC validation. Results Imprecision was acceptable (1.9%–10.3%) and met low cTnI concentration performance goals. Reportable ranges were similar to the manufacturer's specifications. High hemoglobin concentrations in white rhinoceros resulted in a positive bias in the Stratus CS. A simple 13s QC rule using two levels of QCM and a TEa of 70% could be used in both analyzers, except at very low cTnI concentrations in the Atellica VTLi. Conclusions Both cTnI POCAs are suitable for use in African rhinoceros, and analytical performance goals for low cTnI concentrations in hs-cTnI assays were met.
  • Item
    Evaluation of two different etorphine doses combined with azaperone in blesbok (damaliscus pygargus phillipsi) immobilisation
    (South African Veterinary Association, 2021-12-09) Gaudio E; Laubscher LL; Meyer LCR; Hoffman LC; Raath JP; Pfitzer S
    Chemical immobilisation is essential for veterinarians to perform medical procedures in wild African ungulates. Potent opioids combined with neuroleptic drugs are most often used for this purpose. The present study aimed at comparing the quality of immobilisation and effects on physiological variables between a high (high etorphine-azaperone [HE]: 0.09 mg kg-1) and low etorphine dose (low etorphine-azaperone [LE]: 0.05 mg kg-1), both combined with azaperone (0.35 mg kg-1), in 12 adult female boma-acclimatised blesbok. It was hypothesised that a reduction in etorphine's dose in combination with azaperone would result in less cardiorespiratory impairment but likely worsen the quality of immobilisation. Both treatments resulted in rapid induction and recovery times. Overall inter-treatment differences occurred in pulse rate (HE and LE: 52 ± 15 and 44 ± 11 beats minute-1, p < 0.0001), respiratory rate (HE and LE: 15 ± 4 and 17 ± 4 breaths minute-1, p < 0.006), partial pressure of exhaled carbon dioxide (HE and LE: 62.0 ± 5.0 and 60.0 ± 5.6 millimetre of mercury [mmHg], p < 0.028) and arterial carbon dioxide (HE and LE: 58.0 ± 4.5 and 55.0 ± 3.9 mmHg, p < 0.002). Both HE and LE led to bradycardia, hypertension and marked hypoxia to a similar extent. Furthermore, quality of induction, immobilisation and recovery were similar in both treatments. The role of azaperone in the development of cardiorespiratory compromise and gas exchange impairment that occurred when these combinations were used is still unclear. Further studies are recommended to elucidate drug- and dose-specific physiological effects in immobilised antelope.
  • Item
    A Comparison of Hematological, Immunological, and Stress Responses to Capture and Transport in Wild White Rhinoceros Bulls (Ceratotherium simum simum) Supplemented With Azaperone or Midazolam
    (Frontiers Media S.A., 2020-10-20) Pohlin F; Hooijberg EH; Buss P; Huber N; Viljoen FP; Blackhurst D; Meyer LCR; Torrey S
    Capture and transport are essential procedures for the management and conservation of southern white rhinoceroses (Ceratotherium simum simum), but are associated with stress-induced morbidity and mortality. To improve conservation efforts, it is crucial to understand the pathophysiology of rhinoceros stress responses and investigate drug combinations that could reduce these responses. In this study we measured rhinoceros stress responses to capture and transport by quantifying hematological and immunological changes together with adrenal hormone concentrations. We investigated whether the potent anxiolytic drug midazolam was able to mitigate these responses compared to azaperone, which is more commonly used during rhinoceros transport. Twenty three wild white rhinoceros bulls were transported for 6 h (280 km) within the Kruger National Park for reasons unrelated to this study. Rhinoceroses were immobilized with either etorphine-azaperone (group A, n = 11) or etorphine-midazolam (group M, n = 12) intramuscularly by darting from a helicopter. Azaperone (group A) or midazolam (group M) were re-administered intramuscularly every 2 h during transport. Serial blood samples were collected at capture (TC), the start of transport (T0) and after 6 h of transport (T6). Changes in hematological and immunological variables over time and between groups were compared using general mixed models. Increases in plasma epinephrine and serum cortisol concentrations indicated that rhinoceroses mounted a stress response to capture and transport. Packed cell volume decreased from TC to T6 indicating that stress hemoconcentration occurred at TC. Neutrophils progressively increased and lymphocytes and eosinophils progressively decreased from T0 to T6, resulting in an increase in neutrophil to lymphocyte ratio; a characteristic leukocyte response to circulating glucocorticoids. A reduction in serum iron concentrations may suggest the mounting of an acute phase response. Rhinoceroses experienced a decrease in unsaturated fatty acids and an increase in lipid peroxidation products at capture and toward the end of transport indicating oxidative stress. Midazolam, at the dose used in this study, was not able to mitigate adrenal responses to stress and appeared to directly influence leukocyte responses.
  • Item
    Midazolam alters acid-base status less than azaperone during the capture and transport of southern white rhinoceroses (Ceratotherium simum simum)
    (MDPI (Basel, Switzerland), 2020-07-31) Pohlin F; Buss P; Hooijberg EH; Meyer LCR
    Acidemia represents a major life-threatening factor during rhinoceros capture. The acid-base status during rhinoceros transport is unknown. The purpose of this study was to describe changes in acid-base status during rhinoceros capture and transport and compare these changes between rhinoceroses sedated with azaperone or midazolam. Twenty-three wild white rhinoceros bulls were road-transported 280 km for reasons unrelated to this study. Rhinoceroses were captured with etorphine-azaperone (Group A) or etorphine-midazolam (Group M). During transport, azaperone (Group A) or midazolam (Group M) was re-administered every 2 h and venous blood collected. Changes in blood pH and associated variables were compared over time and between groups using a general linear mixed model. Rhinoceroses of both groups experienced a respiratory and metabolic acidosis during capture (pH 7.109 ± 0.099 and 7.196 ± 0.111 for Group A and Group M, respectively) that was quickly compensated for by the start of transport (pH 7.441 ± 0.035 and 7.430 ± 0.057) and remained stable throughout the journey. Rhinoceroses from Group M showed a smaller decrease in pH and associated variables at capture than rhinoceroses from Group A (p = 0.012). The use of midazolam instead of azaperone could therefore improve the success of rhinoceros capture and thus, contribute to the outcome of important conservation translocations.
  • Item
    Spatial risk of pathogen transmission from cattle to vulnerable and endangered wild bovids in Thailand
    (Wiley Periodicals LLC on behalf of Society for Conservation Biology, 2025-08-12) Horpiencharoen W; Marshall JC; Muylaert RL; John RS; Hayman DTS
    The interaction between livestock and wildlife causes challenges for wildlife conservation and public health. Mapping interface areas is essential for prioritizing disease surveillance, implementing mitigation measures, and developing targeted control programs to protect threatened wildlife. We used spatial overlays of habitat suitability to predict interface areas with high risk of pathogen transmission for three Thai wild bovids (gaur [Bos gaurus], banteng [Bos javanicus] and wild water buffalo [Bubalus arnee]) and domestic cattle. We assumed that domestic cattle are the reservoir of important bovine infectious diseases and that high cattle density is a proxy for a higher transmission risk. We calculated the interface inside and outside Thai protected areas and classified these by land use types. Then, we counted the number of bovine infectious disease occurrences reported in high-risk areas. Our study indicated that the highest risk areas for these species are at the forest edges where high habitat suitability and cattle densities overlap. Suitable habitats for wild water buffalo had the largest proportion of high-risk areas (9%), while gaur and banteng had similar risk areas (4%). Kuiburi National Park had the largest risk area (274 km2) for gaur and banteng, whereas the largest risk area for wild water buffalo overlapped with Huai Thabthan-Had Samran by 126 km2. Cropland and unclassified forests had the highest percentage of interface areas, indicating a higher risk of pathogen transmission. Our results highlight how habitat suitability analyses could help infectious disease prevention and control strategies and may also support wild bovid conservation initiatives.
  • Item
    Molecular typing of Leptospira spp. in farmed and wild mammals reveals new host-serovar associations in New Zealand.
    (Taylor and Francis Group, 2024-01-01) Wilkinson DA; Edwards M; Shum C; Moinet M; Anderson NE; Benschop J; Nisa S
    AIMS: To apply molecular typing to DNA isolated from historical samples to determine Leptospira spp. infecting farmed and wild mammals in New Zealand. MATERIALS AND METHODS: DNA samples used in this study were extracted from urine, serum or kidney samples (or Leptospira spp. cultures isolated from them) collected between 2007 and 2017 from a range of domestic and wildlife mammalian species as part of different research projects at Massey University. Samples were included in the study if they met one of three criteria: samples that tested positive with a lipL32 PCR for pathogenic Leptospira; samples that tested negative by lipL32 PCR but were recorded as positive to PCR for pathogenic Leptospira in the previous studies; or samples that were PCR-negative in all studies but were from animals with positive agglutination titres against serogroup Tarassovi. DNA samples were typed using PCR that targeted either the glmU or gyrB genetic loci. The resulting amplicons were sequenced and typed relative to reference sequences. RESULTS: We identified several associations between mammalian hosts and Leptospira strains/serovars that had not been previously reported in New Zealand. Leptospira borgpetersenii strain Pacifica was found in farmed red deer (Cervus elaphus) samples, L. borgpetersenii serovars Balcanica and Ballum were found in wild red deer samples, Leptospira interrogans serovar Copenhageni was found in stoats (Mustela erminea) and brushtail possums (Trichosurus vulpecula), and L. borgpetersenii was found in a ferret (Mustela putorius furo). Furthermore, we reconfirmed previously described associations including dairy cattle with L. interrogans serovars Copenhageni and Pomona and L. borgpetersenii serovars Ballum, Hardjo type bovis and strain Pacifica, sheep with L. interrogans serovar Pomona and L. borgpetersenii serovar Hardjo type bovis, brushtail possum with L. borgpetersenii serovar Balcanica, farmed deer with L. borgpetersenii serovar Hardjo type bovis and hedgehogs (Erinaceus europaeus) with L. borgpetersenii serovar Ballum. CONCLUSIONS: This study provides an updated summary of host-Leptospira associations in New Zealand and highlights the importance of molecular typing. Furthermore, strain Pacifica, which was first identified as Tarassovi using serological methods in dairy cattle in 2016, has circulated in animal communities since at least 2007 but remained undetected as serology is unable to distinguish the different genotypes. CLINICAL RELEVANCE: To date, leptospirosis in New Zealand has been diagnosed with serological typing, which is deficient in typing all strains in circulation. Molecular methods are necessary to accurately type strains of Leptospira spp. infecting mammals in New Zealand.
  • Item
    Mental Experiences in Wild Animals: Scientifically Validating Measurable Welfare Indicators in Free-Roaming Horses
    (MDPI (Basel, Switzerland), 2023-04-28) Harvey AM; Beausoleil NJ; Ramp D; Mellor DJ; Padalino B
    The mental experiences of animals are what characterises their welfare status. The Five Domains Model for assessing welfare aligns with the understanding that physical and mental states are linked. Following measurement of indicators within each of the four physical/functional Domains (1. Nutrition; 2. Physical environment; 3. Health; and 4. Behavioural interactions), the anticipated negative or positive affective consequences (mental experiences) are cautiously inferred and assigned to Domain 5. Those inferences derive credibility from validated knowledge of the underlying systems of physiology, neurophysiology, neuroethology and affective neuroscience. Any indicators used for assessing welfare need to be scientifically validated. This requires, firstly, evidence of the links between a measurable/observable indicator and the physical/functional impact (in Domains 1 to 4), and secondly, a demonstrable relationship between the physical/functional impact and the mental experience it is inferred the indicators reflect (in Domain five). This review refers to indicators of physical/functional states in Domains 1 to 4, which have been shown to be measurable in free-roaming wild horses, and then evaluates the scientific evidence linking them to inferred mental experiences in Domain 5. This is the first time that the scientific evidence validating a comprehensive range of welfare indicators has been synthesised in this way. Inserting these indicators into the Five Domains Model enables transparently justifiable assessment and grading of welfare status in free-roaming horses.
  • Item
    Lessons Learned for Pre-Emptive Capture Management as a Tool for Wildlife Conservation during Oil Spills and Eradication Events.
    (MDPI (Basel, Switzerland), 2023-02-24) Chilvers BL; McClelland PJ; Li C
    Pre-emptive capture or translocation of wildlife during oil spills and prior to pest eradication poison applications are very specific conservation goals within the field of conservation translocation/reintroduction. Protection of wildlife from contamination events occurs during either planned operations such as pest eradication poison applications, or unplanned events such as pollution or oil spills. The aim in both incidences is to protect at-risk wildlife species, ensuring the survival of a threatened regional population or entire species, by excluding wildlife from entering affected areas and therefore preventing impacts on the protected wildlife. If pre-emptive capture does not occur, wildlife may unintentionally be affected and could either die or will need capture, cleaning, and/or medical care and rehabilitation before being released back into a cleared environment. This paper reviews information from pre-emptive captures and translocations of threatened wildlife undertaken during past oil spills and island pest eradications, to assess criteria for species captured, techniques used, outcomes of responses, and lessons learned. From these case studies, the considerations and planning needs for pre-emptive capture are described and recommendations made to allow better use and preparedness for pre-emptive capture as a preventative wildlife conservation tool.