Massey Documents by Type

Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294

Browse

Search Results

Now showing 1 - 9 of 9
  • Item
    Strengthening the reporting of diet item details in feeding studies measuring the dietary metabolome: The DID-METAB core outcome set statement
    (John Wiley and Sons Ltd on behalf of Stichting European Society for Clinical Investigation Journal Foundation, 2025-04-06) Ferguson JJA; Clarke ED; Stanford J; Gómez-Martín M; Jakstas T; Collins CE; DID-METAB Delphi Working Group Authors
  • Item
    Characterisation of the Plasma and Faecal Metabolomes in Participants with Functional Gastrointestinal Disorders.
    (MDPI (Basel, Switzerland), 2024-12-16) Fraser K; James SC; Young W; Gearry RB; Heenan PE; Keenan JI; Talley NJ; McNabb WC; Roy NC; Fukui H
    There is evidence of perturbed microbial and host processes in the gastrointestinal tract of individuals with functional gastrointestinal disorders (FGID) compared to healthy controls. The faecal metabolome provides insight into the metabolic processes localised to the intestinal tract, while the plasma metabolome highlights the overall perturbances of host and/or microbial responses. This study profiled the faecal (n = 221) and plasma (n = 206) metabolomes of individuals with functional constipation (FC), constipation-predominant irritable bowel syndrome (IBS-C), functional diarrhoea (FD), diarrhoea-predominant IBS (IBS-D) and healthy controls (identified using the Rome Criteria IV) using multimodal LC-MS technologies. Discriminant analysis separated patients with the 'all constipation' group (FC and IBS-C) from the healthy control group and 'all diarrhoea' group (FD and IBS-D) from the healthy control group in both sample types. In plasma, almost all multimodal metabolite analyses separated the 'all constipation' or 'all diarrhoea' group from the healthy controls, and the IBS-C or IBS-D group from the healthy control group. Plasma phospholipids and metabolites linked to several amino acid and nucleoside pathways differed (p < 0.05) between healthy controls and IBS-C. In contrast, metabolites involved in bile acid and amino acid metabolism were the key differentiating classes in the plasma of subjects with IBS-D from healthy controls. Faecal lipids, particularly ceramides, diglycerides, and triglycerides, varied (p < 0.05) between healthy controls and the 'all constipation' group and between healthy controls and 'all diarrhoea' group. The faecal and plasma metabolomes showed perturbations between constipation, diarrhoea and healthy control groups that may reflect processes and mechanisms linked to FGIDs.
  • Item
    Changes in Serum Metabolome Following Low-Energy Diet-Induced Weight Loss in Women with Overweight and Prediabetes: A PREVIEW-New Zealand Sub-Study
    (MDPI (Basel, Switzerland), 2024-08-01) Relva B; Samuelsson LM; Duarte IF; Fasol U; Edwards PJB; Fogelholm M; Raben A; Poppitt SD; Silvestre MP; Rogero MM
    As obesity develops, metabolic changes increase the risk of non-communicable diseases such as type 2 diabetes (T2D). Weight loss is crucial for improving health in T2D and cardiometabolic conditions. However, weight loss rates vary between individuals, even with identical diets or energy restrictions, highlighting the need to identify markers or predictors of weight loss success to enhance intervention outcomes. Using nuclear magnetic resonance (NMR) spectroscopy-based metabolomics, we investigated the change in serum polar metabolites in 28 women with overweight or obesity and prediabetes who completed an 8-week low-energy diet (LED) as part of the PREVIEW (PREVention of diabetes through lifestyle intervention and population studies in Europe and around the World) clinical trial. We aimed to characterize the metabolic shift in substrate oxidation under fixed energy intake (~4 MJ/day) and its relation to weight loss success. Nine of the thirty-four serum metabolites identified significantly changed during the LED phase: 3-hydroxybutyrate, O-acetylcarnitine, 2-hydroxybutyrate, mannose, dimethyl sulfone and isobutyrate increased, whilst choline, creatine and tyrosine decreased. These results confirmed a shift towards lipid oxidation, but no metabolites predicted the response to the LED-induced weight loss. Further studies in larger populations are required to validate these metabolites as biomarkers of diet exposure.
  • Item
    The relationship between hair metabolites, air pollution exposure and gestational diabetes mellitus: A longitudinal study from pre-conception to third trimester.
    (Frontiers Media S.A., 2022-12-02) Chen X; Zhao X; Jones MB; Harper A; de Seymour JV; Yang Y; Xia Y; Zhang T; Qi H; Gulliver J; Cannon RD; Saffery R; Zhang H; Han T-L; Baker PN; Zhou N
    BACKGROUND: Gestational diabetes mellitus (GDM) is a metabolic condition defined as glucose intolerance with first presentation during pregnancy. Many studies suggest that environmental exposures, including air pollution, contribute to the pathogenesis of GDM. Although hair metabolite profiles have been shown to reflect pollution exposure, few studies have examined the link between environmental exposures, the maternal hair metabolome and GDM. The aim of this study was to investigate the longitudinal relationship (from pre-conception through to the third trimester) between air pollution exposure, the hair metabolome and GDM in a Chinese cohort. METHODS: A total of 1020 women enrolled in the Complex Lipids in Mothers and Babies (CLIMB) birth cohort were included in our study. Metabolites from maternal hair segments collected pre-conception, and in the first, second, and third trimesters were analysed using gas chromatography-mass spectrometry (GC-MS). Maternal exposure to air pollution was estimated by two methods, namely proximal and land use regression (LUR) models, using air quality data from the air quality monitoring station nearest to the participant's home. Logistic regression and mixed models were applied to investigate associations between the air pollution exposure data and the GDM associated metabolites. RESULTS: Of the 276 hair metabolites identified, the concentrations of fourteen were significantly different between GDM cases and non-GDM controls, including some amino acids and their derivatives, fatty acids, organic acids, and exogenous compounds. Three of the metabolites found in significantly lower concentrations in the hair of women with GDM (2-hydroxybutyric acid, citramalic acid, and myristic acid) were also negatively associated with daily average concentrations of PM2.5, PM10, SO2, NO2, CO and the exposure estimates of PM2.5 and NO2, and positively associated with O3. CONCLUSIONS: This study demonstrated that the maternal hair metabolome reflects the longitudinal metabolic changes that occur in response to environmental exposures and the development of GDM.
  • Item
    Unique rumen micromorphology and microbiota-metabolite interactions: features and strategies for Tibetan sheep adaptation to the plateau.
    (Frontiers Media S.A., 2024-10-09) Chen Q; Sha Y; Liu X; He Y; Chen X; Yang W; Gao M; Huang W; Wang J; He J; Wang L; Zhang L
    The rumen microbiota-a symbiont to its host and consists of critical functional substances-plays a vital role in the animal body and represents a new perspective in the study of adaptive evolution in animals. This study used Slide Viewer slicing analysis system, gas chromatography, RT-qPCR and other technologies, as well as 16S and metabolomics determination methods, to measure and analyze the microstructure of rumen epithelium, rumen fermentation parameters, rumen transport genes, rumen microbiota and metabolites in Tibetan sheep and Hu sheep. The results indicate that the rumen nipple height and cuticle thickness of Tibetan sheep are significantly greater than those of Hu sheep (p < 0.01) and that the digestion and absorption of forage are greater. The levels of carbohydrate metabolism, lipid metabolism, and protein turnover were increased in Tibetan sheep, which enabled them to ferment efficiently, utilize forage, and absorb metabolic volatile fatty acids (VFAs). Tibetan sheep rumen metabolites are related to immune function and energy metabolism, which regulate rumen growth and development and gastrointestinal homeostasis. Thus, compared with Hu sheep, Tibetan sheep have more rumen papilla and cuticle corneum, and the synergistic effect of the microbiota and its metabolites is a characteristic and strategy for adapting to high-altitude environments.
  • Item
    The impact of ethnicity and intra-pancreatic fat on the postprandial metabolome response to whey protein in overweight Asian Chinese and European Caucasian women with prediabetes
    (Frontiers Media S.A., 2022-10-14) Joblin-Mills A; Wu Z; Fraser K; Jones B; Yip W; Lim JJ; Lu L; Sequeira I; Poppitt S; Li X
    The “Thin on the Outside Fat on the Inside” TOFI_Asia study found Asian Chinese to be more susceptible to Type 2 Diabetes (T2D) compared to European Caucasians matched for gender and body mass index (BMI). This was influenced by degree of visceral adipose deposition and ectopic fat accumulation in key organs, including liver and pancreas, leading to altered fasting plasma glucose, insulin resistance, and differences in plasma lipid and metabolite profiles. It remains unclear how intra-pancreatic fat deposition (IPFD) impacts TOFI phenotype-related T2D risk factors associated with Asian Chinese. Cow’s milk whey protein isolate (WPI) is an insulin secretagogue which can suppress hyperglycemia in prediabetes. In this dietary intervention, we used untargeted metabolomics to characterize the postprandial WPI response in 24 overweight women with prediabetes. Participants were classified by ethnicity (Asian Chinese, n=12; European Caucasian, n=12) and IPFD (low IPFD < 4.66%, n=10; high IPFD ≥ 4.66%, n=10). Using a cross-over design participants were randomized to consume three WPI beverages on separate occasions; 0 g (water control), 12.5 g (low protein, LP) and 50 g (high protein, HP), consumed when fasted. An exclusion pipeline for isolating metabolites with temporal (T0-240mins) WPI responses was implemented, and a support vector machine-recursive feature elimination (SVM-RFE) algorithm was used to model relevant metabolites by ethnicity and IPFD classes. Metabolic network analysis identified glycine as a central hub in both ethnicity and IPFD WPI response networks. A depletion of glycine relative to WPI concentration was detected in Chinese and high IPFD participants independent of BMI. Urea cycle metabolites were highly represented among the ethnicity WPI metabolome model, implicating a dysregulation in ammonia and nitrogen metabolism among Chinese participants. Uric acid and purine synthesis pathways were enriched within the high IPFD cohort’s WPI metabolome response, implicating adipogenesis and insulin resistance pathways. In conclusion, the discrimination of ethnicity from WPI metabolome profiles was a stronger prediction model than IPFD in overweight women with prediabetes. Each models’ discriminatory metabolites enriched different metabolic pathways that help to further characterize prediabetes in Asian Chinese women and women with increased IPFD, independently.
  • Item
    In Vitro Fermentation of Sheep and Cow Milk Using Infant Fecal Bacteria
    (MDPI (Basel, Switzerland), 2020-06-17) Ahlborn N; Young W; Mullaney J; Samuelsson LM
    While human milk is the optimal food for infants, formulas that contain ruminant milk can have an important role where breastfeeding is not possible. In this regard, cow milk is most commonly used. However, recent years have brought interest in other ruminant milk. While many similarities exist between ruminant milk, there are likely enough compositional differences to promote different effects in the infant. This may include effects on different bacteria in the large bowel, leading to different metabolites in the gut. In this study sheep and cow milk were digested using an in vitro infant digestive model, followed by fecal fermentation using cultures inoculated with fecal material from two infants of one month and five months of age. The effects of the cow and sheep milk on the fecal microbiota, short-chain fatty acids (SCFA), and other metabolites were investigated. Significant differences in microbial, SCFA, and metabolite composition were observed between fermentation of sheep and cow milk using fecal inoculum from a one-month-old infant, but comparatively minimal differences using fecal inoculum from a five-month-old infant. These results show that sheep milk and cow milk can have differential effects on the gut microbiota, while demonstrating the individuality of the gut microbiome.
  • Item
    Metabolite profiling of peripheral blood plasma in pigs in early postnatal life fed whole bovine, caprine or ovine milk
    (Frontiers Media S.A., 2023-09-26) Jena A; Montoya CA; Fraser K; Giezenaar C; Young W; Mullaney JA; Dilger RN; Roy D; McNabb WC; Roy NC; Leroux C
    Ruminants' milk is commonly used for supplying nutrients to infants when breast milk is unavailable or limited. Previous studies have highlighted the differences between ruminants' milk composition, digestion, absorption, and fermentation. However, whether consuming different ruminants' milk impact the appearance of the circulatory blood metabolites in the early postnatal life is not well understood. The analysis conducted here aimed to determine the effect of feeding exclusively whole milk from bovine, caprine or ovine species to pigs, approximately 7 days-old for 15 days, on circulatory blood plasma metabolites. Relative intensities of plasma metabolites were detected using a liquid chromatography-mass spectrometry based metabolomic approach. Seven polar and 83 non-polar (lipids) metabolites in plasma were significantly different (false discovery rate < 0.05) between milk treatments. These included polar metabolites involved in amino acid metabolism and lipids belonging to phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, and triglycerides. Compared to the caprine or bovine milk group, the relative intensities of polar metabolites and unsaturated triglycerides were higher in the peripheral circulation of the ovine milk group. In contrast, relative intensities of saturated triglycerides and phosphatidylcholine were higher in the bovine milk group compared to the ovine or caprine milk group. In addition, correlations were identified between amino acid and lipid intake and their appearance in peripheral blood circulation. The results highlighted that consuming different ruminants' milk influences the plasma appearance of metabolites, especially lipids, that may contribute to early postnatal life development in pigs.
  • Item
    Mass Spectrometry-Based Metabolomic and Lipidomic Analysis of the Effect of High Fat/High Sugar Diet and GreenshellTM Mussel Feeding on Plasma of Ovariectomized Rats
    (MDPI (Basel, Switzerland), 2021-10-31) Abshirini M; Cabrera D; Fraser K; Siriarchavatana P; Wolber FM; Miller MR; Tian HS; Kruger MC; Whitfield P; Rizzo M
    This study aimed to examine the changes in lipid and metabolite profiles of ovariectomized (OVX) rats with diet-induced metabolic syndrome-associated osteoarthritis (MetOA) after supplementation with greenshell mussel (GSM) using an untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics approach. Ninety-six rats were fed with one of four diets: control, control supplemented with GSM + GSM, high fat/high sugar (HFHS), or high fat/high sugar enriched with GSM (HFHS + GSM). After 8 weeks on experimental diets, half of the rats in each group underwent OVX and the other half were sham operated. After being fed for an additional 28 weeks, blood samples were collected for the metabolomics analysis. Lipid and polar metabolites were extracted from plasma and analysed by LC-MS. We identified 29 lipid species from four lipid subclasses (phosphatidylcholine, lysophosphatidylcholine, diacylglycerol, and triacylglycerol) and a set of eight metabolites involved in amino acid metabolism (serine, threonine, lysine, valine, histidine, pipecolic acid, 3-methylcytidine, and cholic acid) as potential biomarkers for the effect of HFHS diet and GSM supplementation. GSM incorporation more specifically in the control diet generated significant alterations in the levels of several lipids and metabolites. Further studies are required to validate these findings that identify potential biomarkers to follow OA progression and to monitor the impact of GSM supplementation.