• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of assays for biomarkers of oxidative damage to assess the efficacy of fruit-derived antioxidants : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Biochemistry at Massey University

    Icon
    View/Open Full Text
    01_front.pdf (3.741Mb)
    02_whole.pdf (38.93Mb)
    Export to EndNote
    Abstract
    The diet is a very important part of maintaining a healthy lifestyle. Increased consumption of fruits and vegetables is one practice postulated to decrease the incidence of diseases such as cancer, cardiovascular disease and other disorders. Although there are a number of possible beneficial compounds in fruit, it is believed that the antioxidant components found in these foods may decrease the oxidative damage that could lead to such diseases. Oxidative damage to cellular proteins, lipids and DNA is considered to result from an increase in the production of free radicals, which overwhelm the body's defence system. This research investigated fruit-derived antioxidants, and developed biomarker assays to measure the potential health benefits they may offer. To determine the in vivo antioxidant efficacy of berry fruit anthocyanins, oxidative damage to proteins, lipids and DNA was measured in rats fed several combinations of natural and synthetic diets. Mild oxidative damage was induced by the inclusion of fish oil in these diets. DNA oxidation was determined by measuring urinary 8-hydroxy-2'-deoxyguanosine using reversed-phase high performance liquid chromatography with electrochemical detection. ELISA and colorimetric techniques were used to measure protein carbonyl content of plasma as a reflection of protein oxidation. Oxidation to lipids was assessed by measuring malondialdehyde, which results from lipid peroxidation. Supplementation with fish oil induced a mild form of dietary oxidative damage, as shown by an increase in lipid and protein oxidation. In most cases the berry fruit extracts had little effect on the level of fish oil-induced oxidative damage, however, boysenberry anthocyanin extract significantly reduced protein oxidation when used in combination with the natural diet. Taken together the results suggest that oxidative damage to biomacromolecules may occur by different pathways of oxidative stress, which selectively target either DNA, protein or lipids at varying levels, and the antioxidant is effective only with selected mechanisms of oxidative damage.
    Date
    2003
    Author
    Barnett, Laura Evelyn
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/10239
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-27.11.15
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-27.11.15