• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The clay mineralogy and erosion of the Waipaoa River catchment, Gisborne, New Zealand : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Quaternary Science at Massey University

    Icon
    View/Open Full Text
    01_front.pdf (377.0Kb)
    02_whole.pdf (18.84Mb)
    Export to EndNote
    Abstract
    The Waipaoa River Catchment lies N-NW of Gisborne, covering 2181 km2 it drains south into Poverty Bay 10 km SW of Gisborne. It carries approximately 15 million tonnes of suspended sediment annually, ranking it as one of the most sediment - laden rivers in the world. Deforestation in the early 1900's has led to severe landslide and gully erosion. To assist in catchment analysis and sediment budgeting, Landcare Research divided the Waipaoa River Catchment into 16 land systems, based on the Land Resource Inventory; principally rock type and erosion type and severity. Four of these land systems were chosen to test the hypothesis that clay mineralogy will influence whether landslide or gully erosion is dominant. And, if mineralogical signatures could be established for the different land systems, they could be traced downstream onto the floodplain and into the marine environment. There is no consistent mineralogical difference between the two chosen landslide dominated land systems and the two gully dominated systems. The Mangatu Land System is dominated by gully erosion. Samples taken from the Tarndale Gully complex within the Mangatu Land System for example, are dominated by quartz in the clay fraction, whereas gullies in the Waingaromia Land System are dominated by mica and smectite. The landslide dominated Te Arai Land System, like the Waingaromia Land System, is also primarily mica and smectite, while the clay minerals of the Mako Mako Land System consist of mica and the clay - sized mineral feldspar. It appears that tectonic influence of uplift and faulting, and its influence on headward erosion by streams, is most important in predisposition to gully erosion. The Mangatu Land System dominates the clay mineralogy of both the bedload and suspended sediment of the Waipaoa River at normal flow. However, dilution of this signature does occur at Te Karaka with the influence of the Waingaromia, Waikohu, and Waihora Rivers. In major flood events during high intensity storms, landsliding is more prevalent. Floodplain sediments are thus predominantly soil mantle materials derived from shallow landsliding and bare little resemblance to the dominant Mangatu Land System sediments. Whereas, the Poverty Bay marine core MD2122 sediment, representative of the annual Waipaoa River sediment yield, is produced by the continuous gully erosion. The effect of differential settling gives the core mineralogy a similar signal to that of the floodplain cores; however, sediment is considered to be predominantly Cretaceous material.
    Date
    2002
    Author
    D'Ath, Michele Annette
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/10505
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1