• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Heat recovery refrigeration in New Zealand dairy sheds : a thesis presented in partial fulfilment of the requirements for the degree of Master of Agricultural Science in Agricultural Engineering at Massey University

    Icon
    View/Open Full Text
    01_front.pdf (1.531Mb)
    02_whole.pdf (25.86Mb)
    Abstract
    Increased energy costs initiated an investigation into refrigeration heat recovery as one conservation alternative available for reducing water heating costs on farm dairies. A theoretical energy balance was conducted, from which the potential of recovering refrigeration condenser heat was estimated at up to 60% of the water heating energy requirements. Preliminary tests with heat exchangers lead to the use of a tube-in-tube, counter flow, heat exchanger with fins on the refrigerant side, and cores on the water side, to improve the heat transfer characteristics. The exchanger, designed to provide 300 litres of 60°C water from a 2.25 kw refrigeration system cooling 2000 litres of milk per day, had an area of 0.84 m2, and an overall thermal conductance of 100 W.m-2.°C-1. This heat exchanger was inserted between the compressor and condenser of the refrigeration plant and tested with two condenser systems (air and water), four condenser pressures (6.5 bar, 7.5 bar, 10 bar and 12 bar), two milk inlet temperatures(23°C and l8°C), and two milk final temperatures (4°C and 7°C). In addition, tests on receiver pressure and suction superheat were performed to determine overall system performance. Increasing condenser pressure increased cooling times from 2 hours 32 minutes to 3 hours 17 minutes, after the completion of the 1200 litre morning milking (thus failing to comply with the 3 hour cooling regulation at high condenser pressures.) Also, C.O.P. decreased from 3.05 to 2.35 for the water cooled condenser system (2.70 to 2.00 for the air cooled condenser system due to fan power consumption). Gross heat recovery rose from 4.2 kWh.day-1 .m-3 to 8.l kWh.day-1 .m-3 for the water cooled system, giving water outlet temperatures of 45°C to 64°C as condenser pressure rose. The corresponding ranges for air cooled condensers were 3.8 kWh.day-1 .m-3, to 6.6 kWh .day-1 .m-3, and 38°C to 55°C. Changing milk inlet and final temperatures gave a proportional change in cooling times and total heat recovery, but had no effect on C.O.P. or heat recovery rates. Suction superheating increased total heat recovery by 15%, and water outlet temperatures by 9%. Increases in gross heat recovery with increasing condenser pressure were partially offset by additional compressor power, and yielded nett heat recoveries of 4.0 kWh.day-1 .m-3 to 6.0 kWh.day-1 .m-3 for water cooled, and 3.6 kWh. day-1 .m-3 to 4.3 kWh. day-1 .m-3 for air cooled, condenser systems. The maximum gross and nett heat recoveries (at 12 bar condenser pressure) were applied to the energy requirements of a monitored 220 cow town supply dairy. This analysis showed that the gross heat recovery was 51% of the water heating requirements, but the nett heat recovery dropped to 17% of the total heating and refrigeration demand. Based on current electricity and equipment prices, it is estimated that the payback period for this level of recovery would be 16-17 years. Changing the electricity pricing structure, to reflect up to a 1:3 differential in favour of water heating power costs, results in the 6.5 bar condenser pressure giving optimum results, but the nett returns are significantly lower than those reported. The potential for improved savings is greater from larger capacity systems as the capital investment is not proportionally increased with an increase in scale.
    Date
    1982
    Author
    Stinson, Grant Errol
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/10565
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © 2018 Massey University
    Contact Us | Send Feedback | Copyright Take Down Request
    DSpace software copyright © Duraspace
    v5.7-14.09.11
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile Formats

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © 2018 Massey University
    Contact Us | Send Feedback | Copyright Take Down Request
    DSpace software copyright © Duraspace
    v5.7-14.09.11